DOI QR코드

DOI QR Code

Thermal buckling behaviour of shear deformable functionally graded single/doubly curved shell panel with TD and TID properties

  • Kar, Vishesh R. (Department of Design and Automation, School of Mechanical Engineering, VIT University Vellore) ;
  • Panda, Subrata K. (Department of Mechanical Engineering, National Institute of Technology) ;
  • Mahapatra, Trupti R. (School of Mechanical Engineering, KIIT University)
  • Received : 2016.07.20
  • Accepted : 2016.11.30
  • Published : 2016.12.25

Abstract

In this article, the buckling responses of functionally graded curved (spherical, cylindrical, hyperbolic and elliptical) shell panels under elevated temperature load are investigated numerically using finite element steps. The effective material properties of the functionally graded shell panel are evaluated using Voigt's micromechanical model through the power-law distribution with and without temperature dependent properties. The mathematical model is developed using the higher-order shear deformation theory in conjunction with Green-Lagrange type nonlinear strain to consider large geometrical distortion under thermal load. The efficacy of the proposed model has been checked and the effects of various geometrical and material parameters on the buckling load are analysed in details.

Keywords

References

  1. Abdelhak, Z., Hadji, L., Daouadji, T.H. and Bedia, E.A. (2015), "Thermal buckling of functionally graded plates using a n-order four variable refined theory", Adv. Mat. Res., 4(1), 31-44. https://doi.org/10.12989/amr.2015.4.1.31
  2. Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Beg, O.A. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Composites: Part B, 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
  3. Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A. and Tounsi, A. (2016), "Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position", J. Braz. Soc. Mech. Sci. Eng., 38(1), 265-275. https://doi.org/10.1007/s40430-015-0354-0
  4. Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423-431. https://doi.org/10.1080/15376494.2014.984088
  5. Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085
  6. Bouiadjra, M. B., Houari, M. S. A. and Tounsi, A. (2012), "Thermal buckling of functionally graded plates according to a four-variable refined plate theory", J. Therm. Stress., 35(8), 677-694. https://doi.org/10.1080/01495739.2012.688665
  7. Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., 20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227
  8. Bourada, F., Amara, K. and Tounsi, A. (2016), "Buckling analysis of isotropic and orthotropic plates using a novel four variable refined plate theory", Steel Compos. Struct., 21(6), 1287-1306. https://doi.org/10.12989/scs.2016.21.6.1287
  9. Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
  10. Bourada, M., Tounsi, A., Houari, M.S.A., Abbes, E. and Bedia, A. (2011), "A new four-variable refined plate theory for thermal buckling analysis of functionally graded sandwich plates", J. Sandwich Struct. Mater., 14(1), 5-33. https://doi.org/10.1177/1099636211426386
  11. Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Bedia, E.A. (2014), "A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates", Int. J. Computat. Method, 11(6), 1350082. https://doi.org/10.1142/S0219876213500825
  12. Cook, R.D., Malkus, D.S., Plesha, M.E. and Witt, R.J. (2009), Concepts and Applications of Finite Element Analysis, John Wiley & Sons, Singapore.
  13. Daouadji, T.H., Adim, B. and Benferhat, R. (2016), "Bending analysis of an imperfect FGM plates under hygro-thermo-mechanical loading with analytical validation", Adv. Mat. Res., 5(1), 35-53. https://doi.org/10.12989/amr.2016.5.1.035
  14. Ganapathi, M. and Prakash, T. (2006), "Thermal buckling of simply supported functionally graded skew plates", Compos. Struct., 74(2), 247-250. https://doi.org/10.1016/j.compstruct.2005.04.004
  15. Ganapathi, M., Prakash, T. and Sundararajan N. (2006), "Influence of functionally graded material on buckling of skew plates under mechanical loads", J. Eng. Mech., 132(8), 902-905. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:8(902)
  16. Ghannadpour, S.A.M., Ovesy, H.R. and Nassirnia, M. (2012), "Buckling analysis of functionally graded plates under thermal loadings using the finite strip method", Comput. Struct., 108, 93-99.
  17. Gibson, L.J. Ashby, M.F., Karam, G.N., Wegst, U. and Shercliff, H.R. (1995), "Mechanical properties of natural materials. II. Microstructures for mechanical efficiency", Proceedings of Royal Society-A, 450, 141-162, July. https://doi.org/10.1098/rspa.1995.0076
  18. Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235
  19. Hebali, H., Tounsi, A., Houari, M., Bessaim, A. and Bedia, E.A. (2014), "A new quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", J. Eng. Mech., 140(2), 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665
  20. Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S.R. (2016), "A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates", Steel Compos. Struct., 22(2), 257-276. https://doi.org/10.12989/scs.2016.22.2.257
  21. Javaheri, R. and Eslami, M.R. (2002), "Buckling of functionally graded plates under in-plane compressive loading", J. Appl. Math. Mech., 82(4), 277-283.
  22. Javaheri, R. and Eslami, M.R. (2002), "Thermal buckling of functionally graded plates", AIAA J., 40(1), 162-169. https://doi.org/10.2514/2.1626
  23. Javaheri, R. and Eslami, M.R. (2002), "Thermal buckling of functionally graded plates based on higher order theory", J. Therm. Stress., 25(7), 603-625. https://doi.org/10.1080/01495730290074333
  24. Kar, V.R. and Panda, S.K. (2015), "Thermoelastic analysis of functionally graded doubly curved shell panels using nonlinear finite element method", Compos. Struct., 129, 202-212. https://doi.org/10.1016/j.compstruct.2015.04.006
  25. Kar, V.R. and Panda, S.K. (2015), "Nonlinear thermomechanical deformation behaviour of P-FGM spherical shallow shell panel", Chinese J. Aeronautics, doi:10.1016/J.CJA.2015.12.007
  26. Lanhe, W. (2004), "Thermal buckling of a simply supported moderately thick rectangular FGM plate", Compos. Struct., 64(2), 211-218. https://doi.org/10.1016/j.compstruct.2003.08.004
  27. Mahapatra, T.R. and Panda, S.K. (2015a), "Nonlinear free vibration analysis of laminated composite spherical shell panel under elevated hygrothermal environment: A micromechanical approach", Aero. Sci. Technol., doi:10.1016/J.AST.2015.12.018
  28. Mahapatra, T.R., Panda, S.K. and Kar, V.R. (2015b), "Nonlinear hygro-thermo-elastic vibration analysis of doubly curved composite shell panel using finite element micromechanical model", Mech. Adv. Mater. Struct., doi:10.1080/15376494.2015.1085606
  29. Mahi, A., Bedia, E.A.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39(9), 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045
  30. Mehar, K., Panda, S.K., Dehengia, A, and Kar V.R. (2015), "Vibration analysis of functionally graded carbon nanotube reinforced composite plate in thermal environment", J. Sandwich Struct. Mater., doi:10.1177/1099636215613324.
  31. Meziane, M.A.A., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions" J. Sandwich Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
  32. Na, K.S. and Kim, J.H. (2004), "Three-dimensional thermal buckling analysis of functionally graded materials", Compos. Part B-Eng., 35(5), 429-437. https://doi.org/10.1016/j.compositesb.2003.11.013
  33. Panda, S.K. and Singh, B.N. (2009), "Thermal post-buckling behaviour of laminated composite cylindrical/hyperboloidal shallow shell panel using nonlinear finite element method", Compos. Struct., 91(3), 366-384. https://doi.org/10.1016/j.compstruct.2009.06.004
  34. Panda, S.K. and Singh, B.N. (2010a), "Nonlinear free vibration analysis of thermally post-buckled composite spherical shell panel", Int. J. Mech. Mater. Des., 6(2), 175-188. https://doi.org/10.1007/s10999-010-9127-1
  35. Panda, S.K. and Singh, B.N. (2010b), "Thermal post-buckling analysis of laminated composite spherical shell panel embedded with SMA fibres using nonlinear FEM", Proc. IMechE Part C: J. Mech. Eng. Sci., 224(4), 757-769.
  36. Panda, S.K. and Singh, B.N. (2011), "Large Amplitude Free Vibration Analysis of Thermally Post-buckled Composite Doubly Curved Panel using Nonlinear FEM", Finite Element. Anal. Des., 47(4), 378-386. https://doi.org/10.1016/j.finel.2010.12.008
  37. Panda, S.K. and Singh, B.N. (2013), "Nonlinear Finite Element Analysis of Thermal Post-buckling Vibration of Laminated Composite Shell Panel Embedded with SMA fibre", Aero. Sci. Technol., 29(1), 47-57. https://doi.org/10.1016/j.ast.2013.01.007
  38. Panda, S.K. and Singh, B.N. (2013a), "Large amplitude free vibration analysis of thermally post-buckled composite doubly curved panel embedded with SMA fibres", Nonlin. Dyn., 74(1-2), 395-418. https://doi.org/10.1007/s11071-013-0978-5
  39. Panda, S.K. and Singh, B.N. (2013b), "Thermal post-buckling analysis of laminated composite shell panel using NFEM", Mech. Based. Des. Struct. Mach., 41(4), 468-488. https://doi.org/10.1080/15397734.2013.797330
  40. Panda, S.K. and Singh, B.N. (2013c), "Postbuckling analysis of laminated composite doubly curved panel embedded with SMA fibres subjected to thermal environment", Mech. Adv. Mater. Struct., 20(10), 842-853. https://doi.org/10.1080/15376494.2012.677097
  41. Pradyumna, S. and Bandyopadhyay, J.N. (2010), "Free vibration and buckling of functionally graded shell panels in thermal environments", Int. J. Struct. Stab. Dyn., 10(5), 1031-1053. https://doi.org/10.1142/S0219455410003889
  42. Reddy, J.N. and Chin, C.D. (1998), "Thermomechanical analysis of functionally graded cylinders and plates", J. Therm. Stress., 21(6), 593-626. https://doi.org/10.1080/01495739808956165
  43. Shahsiah, R. and Eslami, M.R. (2003), "Thermal buckling of functionally graded cylindrical shell", J. Therm. Stress., 26(3), 277-294. https://doi.org/10.1080/713855892
  44. Shariat, B.A.S. and Eslami, M.R. (2005), "Effect of initial imperfections on thermal buckling of functionally graded plates", J. Therm. Stress., 28(12), 1183-1198. https://doi.org/10.1080/014957390967884
  45. Shariat, B.A.S. and Eslami, M.R. (2006), "Thermal buckling of imperfect functionally graded plates", Int. J. Solids Struct., 43(14-15), 4082-4096. https://doi.org/10.1016/j.ijsolstr.2005.04.005
  46. Shariat, B.A.S. and Eslami, M.R. (2007), "Buckling of thick functionally graded plates under mechanical and thermal loads", Compos. Struct., 78(3), 433-439. https://doi.org/10.1016/j.compstruct.2005.11.001
  47. Shariat, B.A.S., Javaheri, R. and Eslami, M.R. (2005), "Buckling of imperfect functionally graded plates under in-plane compressive loading", Thin-Wall. Struct., 43(7), 1020-1036. https://doi.org/10.1016/j.tws.2005.01.002
  48. Shen, H.S. (2009), Functionally Graded Material: Nonlinear Analysis of Plates and Shells, CRC press, Boca Raton, FL.
  49. Thai, H.T. and Choi, D.H. (2012), "An efficient and simple refined theory for buckling analysis of functionally graded plates", Appl. Math. Model., 36(3), 1008-1022. https://doi.org/10.1016/j.apm.2011.07.062
  50. Topal, U. and Uzman, U. (2009), "Thermal buckling load optimization of angle-ply laminated cylindrical shells", Int. J. Mater. Des., 30(3), 532-536.
  51. Tounsi, A., Houari, M.S.A. and Bessaim, A. (2016), "A new 3-unknowns non-polynomial plate theory for buckling and vibration of functionally graded sandwich plate", Struct. Eng. Mech., 60(4), 547-565. https://doi.org/10.12989/sem.2016.60.4.547
  52. Tounsi, A., Houari, M.S.A., Benyoucef, S. and Adda Bedia, E.A. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aero. Sci. Tech., 24(1), 209-220. https://doi.org/10.1016/j.ast.2011.11.009
  53. Yahia, S.A., Atmane, H.A., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143
  54. Zhao, X.Y., Lee, Y. and Liew, K.M. (2009), "Mechanical and thermal buckling analysis of functionally graded plates", Compos. Struct., 90(2), 161-171. https://doi.org/10.1016/j.compstruct.2009.03.005
  55. Zidi, M., Tounsi, A., Houari, M.S.A. and Beg, O.A. (2014), "Bending analysis of FGM plates under hygrothermo-mechanical loading using a four variable refined plate theory", Aero. Sci. Tech., 34, 24-34. https://doi.org/10.1016/j.ast.2014.02.001

Cited by

  1. Thermal buckling analysis of functionally graded sandwich plates vol.41, pp.2, 2018, https://doi.org/10.1080/01495739.2017.1393644
  2. A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates vol.184, 2018, https://doi.org/10.1016/j.compstruct.2017.10.047
  3. Non-linear fracture analysis of multilayered two-dimensional graded beams 2018, https://doi.org/10.1108/MMMS-09-2017-0107
  4. Buckling Analysis of Orthotropic Nanoscale Plates Resting on Elastic Foundations vol.55, pp.1661-9897, 2018, https://doi.org/10.4028/www.scientific.net/JNanoR.55.42
  5. Nonlinear stability of CNT-reinforced composite cylindrical panels with elastically restrained straight edges under combined thermomechanical loading conditions pp.1530-7980, 2018, https://doi.org/10.1177/0892705718805134
  6. Non-linear delamination in two-dimensional functionally graded multilayered beam vol.9, pp.5, 2018, https://doi.org/10.1108/IJSI-12-2017-0079
  7. Size-dependent bending behavior of three-layered doubly curved shells: Modified couple stress formulation pp.1530-7972, 2018, https://doi.org/10.1177/1099636218793993
  8. Nonlocal three-dimensional theory of elasticity for buckling behavior of functionally graded porous nanoplates using volume integrals vol.5, pp.9, 2018, https://doi.org/10.1088/2053-1591/aad4c3
  9. An original single variable shear deformation theory for buckling analysis of thick isotropic plates vol.63, pp.4, 2017, https://doi.org/10.12989/sem.2017.63.4.439
  10. Free vibration of functionally graded plates resting on elastic foundations based on quasi-3D hybrid-type higher order shear deformation theory vol.20, pp.4, 2017, https://doi.org/10.12989/sss.2017.20.4.509
  11. An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates vol.25, pp.3, 2016, https://doi.org/10.12989/scs.2017.25.3.257
  12. A novel and simple higher order shear deformation theory for stability and vibration of functionally graded sandwich plate vol.25, pp.4, 2017, https://doi.org/10.12989/scs.2017.25.4.389
  13. An original HSDT for free vibration analysis of functionally graded plates vol.25, pp.6, 2016, https://doi.org/10.12989/scs.2017.25.6.735
  14. Vibration analysis of thick orthotropic plates using quasi 3D sinusoidal shear deformation theory vol.16, pp.2, 2016, https://doi.org/10.12989/gae.2018.16.2.141
  15. Improved HSDT accounting for effect of thickness stretching in advanced composite plates vol.66, pp.1, 2016, https://doi.org/10.12989/sem.2018.66.1.061
  16. A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory vol.21, pp.4, 2016, https://doi.org/10.12989/sss.2018.21.4.397
  17. Free vibration of FGM plates with porosity by a shear deformation theory with four variables vol.66, pp.3, 2016, https://doi.org/10.12989/sem.2018.66.3.353
  18. Three dimensional finite elements modeling of FGM plate bending using UMAT vol.66, pp.4, 2018, https://doi.org/10.12989/sem.2018.66.4.487
  19. Nonlinear spectral collocation analysis of imperfect functionally graded plates under end-shortening vol.66, pp.5, 2016, https://doi.org/10.12989/sem.2018.66.5.557
  20. Single variable shear deformation model for bending analysis of thick beams vol.67, pp.3, 2016, https://doi.org/10.12989/sem.2018.67.3.291
  21. A novel quasi-3D hyperbolic shear deformation theory for vibration analysis of simply supported functionally graded plates vol.22, pp.3, 2016, https://doi.org/10.12989/sss.2018.22.3.303
  22. Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory vol.28, pp.1, 2016, https://doi.org/10.12989/was.2019.28.1.019
  23. A novel refined shear deformation theory for the buckling analysis of thick isotropic plates vol.69, pp.3, 2019, https://doi.org/10.12989/sem.2019.69.3.335
  24. New insight into residual stresses in amine-grafted MWCNTs/binary resin composites under complex thermomechanical loadings vol.32, pp.11, 2016, https://doi.org/10.1177/0892705718797152
  25. Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory vol.25, pp.2, 2020, https://doi.org/10.12989/cac.2020.25.2.155
  26. A refined HSDT for bending and dynamic analysis of FGM plates vol.74, pp.1, 2020, https://doi.org/10.12989/sem.2020.74.1.105
  27. Thermo-elastic buckling and post-buckling analysis of functionally graded thin plate and shell structures vol.42, pp.5, 2020, https://doi.org/10.1007/s40430-020-02314-5
  28. Thermal buckling analysis of functionally graded sandwich cylindrical shells vol.7, pp.4, 2016, https://doi.org/10.12989/aas.2020.7.4.335
  29. Thermal Buckling of Graphene Platelets Toughening Sandwich Functionally Graded Porous Plate with Temperature-Dependent Properties vol.12, pp.8, 2016, https://doi.org/10.1142/s1758825120500891
  30. The nano scale buckling properties of isolated protein microtubules based on modified strain gradient theory and a new single variable trigonometric beam theory vol.10, pp.1, 2016, https://doi.org/10.12989/anr.2021.10.1.015
  31. Buckling analysis of functionally graded plates using HSDT in conjunction with the stress function method vol.27, pp.1, 2016, https://doi.org/10.12989/cac.2021.27.1.073
  32. Modal analysis of cylindrical panels at elevated temperatures under nonuniform heating conditions: Experimental investigation vol.235, pp.5, 2021, https://doi.org/10.1177/0954406220936738
  33. Analyzing the Thermal Post-Buckling of Composite Plate Containing an Elliptical Cut-Out Using a Particle Semi-Energy Method vol.21, pp.7, 2016, https://doi.org/10.1142/s0219455421500887
  34. Third-order electro-elastic analysis of sandwich doubly curved piezoelectric micro shells vol.49, pp.6, 2021, https://doi.org/10.1080/15397734.2019.1698435
  35. Mechanical and thermal buckling analysis of laminated composite plates vol.40, pp.5, 2016, https://doi.org/10.12989/scs.2021.40.5.697