DOI QR코드

DOI QR Code

The Development of an Algorithm for the Optimal Signal Control for Isolated Intersections under V2X Communication Environment

V2X 통신환경에서의 독립교차로 신호 최적제어 알고리즘 개발 연구

  • 한음 (아주대학교 건설교통공학과) ;
  • 박상민 (아주대학교 건설교통공학과) ;
  • 정하림 (아주대학교 건설교통공학과) ;
  • 이철기 (아주대학교 교통시스템공학과) ;
  • 윤일수 (아주대학교 교통시스템공학과)
  • Received : 2016.10.04
  • Accepted : 2016.10.24
  • Published : 2016.12.31

Abstract

This study was initiated to develop an algorithm for traffic condition adaptive optimal traffic signal control for isolated intersections based on the vehicle trajectory data. The algorithm determines the optimal cycle length, phase lengths, phase sequences using the data collected under V2X communication environment every second. In addition, the algorithm utilizes a traditional feature of the actuated signal control, gap-out, using traditional detector systems to consider the mixture of normal vehicles and vehicles equipped with the V2X communication function. The performance of the algorithm was compared with that of the fixed signal timing plan which was optimized with Synchro under a microscopic traffic simulation-based test bed. As a result, the overall performance, including average delay, average stop delay, the number of stops, and average speed, are improved apparently. In addition, the amount of improvement get bigger as the traffic volume in the intersection as well as the number of vehicles equipped with the V2X communication function increase.

본 연구에서는 V2X 통신환경 하에서 개별 차량 기반 수집 데이터를 활용하여 독립교차로의 실시간 교통상황대응 최적 교통신호 제어 알고리즘을 개발하였다. 매초 간격으로 V2X 통신환경에서 수집되는 정보를 이용하여 주기, 현시, 현시 순서를 결정하는 알고리즘과 이 알고리즘 안에서 감응식 신호를 적용하여 독립신호 교차로의 신호 최적제어를 실시하였다. 최적화된 신호시간과 본 연구에서 개발된 알고리즘을 활용한 신호제어 성능을 비교하면 전제적으로 평균 지체, 평균 정지지체, 정지횟수, 평균속도가 개선되었음을 나타나고 있으며, 개선 폭이 교통량이 많아질수록 커지는 것으로 분석되었다. 또한 시장점유율에 따른 도입 시기 평가 결과, 평균 지체의 경우 교통량이 500대의 경우 시장점유율이 50% 이하로 내려가면 본 연구에서 개발된 알고리즘이 기존 신호알고리즘보다 높은 지체를 보였으나, 교통량이 1,000대일 경우 시장 점유율 25% 이하에서 지체가 높아졌다. 하지만 1,500대일 경우 시장점유율에 25%에 불과해도 기존의 신호제어 알고리즘보다 지체가 낮아지는 것으로 분석되었다.

Keywords

References

  1. Cho H., Lee H. and Kim Y. (2014), "2011, 2012 Traffic Congestion Costs: Estimation and Trend Analysis," Korea Transport Institute, pp.1-121.
  2. Dey K. C., Rayamajhi A., Chowdhury M., Bhavsar P. and Martin J. (2016), "Vehicle-tovehicle (V2V) and vehicle-to-infrastructure (V2I) communication in a heterogeneous wireless network-Performance evaluation," Transportation Research Part C: Emerging Technologies, vol. 68, pp.168-184. https://doi.org/10.1016/j.trc.2016.03.008
  3. Kattan L., Moussavi M., Far B., Harschnitz C., Radmanesh A. and Saidi S. (2010), "Evaluating the potential benefits of vehicle to vehicle communication (V2V) under incident conditions in the PARAMICS model," In Proceedings of the 13th International IEEE Conference on Intelligent Transportation, Madeira, Portugal, vol. 9.
  4. Yoon K. (1998), "Dynamic Control of Coordinated Traffic Signals for Minimizing Queue-lengths," Proceedings of the KOR-KST Conference, vol. 34, pp.196-205.
  5. Lee Y. and Choi S. (2000), "Estimation of A Car-following Model for Microscopic Simulation Model Based on GM 5th Model," The Journal of Korean Institute of Transport System, vol. 18, no. 6, pp.47-61.
  6. Han Y. and Kim Y. (2012), "The Progression-Delay Model for Simulating Performance for Signalized Intersections," Proceedings of the The Journal of The Korea Institute of Intelligent Transport Systems, no. 1, pp. 151-155.
  7. Goodall N., Smith B. and Park B. (2013), "Traffic signal control with connected vehicles," Transportation Research Record: Journal of the Transportation Research Board, vol. 2381, pp.65-72.
  8. Feng Y., Head K. L., Khoshmagham S. and Zamanipour M. (2015), "A real-time adaptive signal control in a connected vehicle environment," Transportation Research Part C: Emerging Technologies, vol. 55, pp.460-473. https://doi.org/10.1016/j.trc.2015.01.007
  9. Minelli S., Izadpanah P. and Razavi S. (2015), "Evaluation of connected vehicle impact on mobility and mode choice," Journal of traffic and transportation engineering (English edition), vol. 2, no. 5, pp.301-312. https://doi.org/10.1016/j.jtte.2015.08.002
  10. Do C. (1989), "Principle of Transportation Engineering," Cheongmoongak, pp.447-453.

Cited by

  1. Optimal Signal Control Algorithm for Signalized Intersections under a V2I Communication Environment vol.2019, pp.2042-3195, 2019, https://doi.org/10.1155/2019/6039741