DOI QR코드

DOI QR Code

Wave Modeling considering Water Level Changes and Currents Effects

수위변화와 흐름효과를 고려한 파랑모델링

  • 엄호식 ((주)지오시스템리서치) ;
  • 강태순 ((주)지오시스템리서치) ;
  • 남수용 ((주)지오시스템리서치) ;
  • 정원무 (한국해양과학기술원 연안공학연구본부)
  • Received : 2016.11.21
  • Accepted : 2016.12.27
  • Published : 2016.12.31

Abstract

In this study, wave model was conducted on the presence or absence of water level changes and currents effects in coastal waters coexisting with waves and currents, then the results were compared. The flow field applied the results of the RIAMOM model and the wave model applied the SWAN model. Among ECMWF, NCEP and JMA, wind data applied JMA data sets which agreed well with the observed data comparatively. Numerical simulation was conducted for 8 months from January to August 2016. For each case, the deviation of wave height was calculated for the high wave of more than 2.5 m for comparison with observed data. As a result, the deviation of wave height was not significant both considering water level changes and currents effects or not at wave observation stations installed in deep waters. However, a significant deviation of wave height of 5~10% was obtained depending on water level changes and currents effects at the comparison point in shallow waters.

본 연구에서는 파랑과 흐름이 공존하는 해역에서 수위변화 및 흐름효과 고려 유무에 대하여 파랑모델을 수행하여 그 결과를 비교하였다. 해수유동장은 RIAMOM 모델 결과를 적용하였으며 파랑모델은 SWAN모델을 적용하였다. 바람자료는 ECMWF, NCEP 및 JMA의 3가지에 대하여 관측자료를 비교적 잘 재현하는 JMA 자료를 적용하였다. 수치모의는 2016년 1월~8월까지 8개월간 수행하였으며, 각 경우에 대하여 관측자료와의 비교를 위하여 2.5 m이상의 고파랑 기간에 대해 파고변화를 검토하였다. 분석결과, 수심이 깊은 파랑관측부이 정점에서는 수위/흐름효과를 고려할 경우 파고변화가 크지 않게 나타났으나, 수심이 얕은 비교 정점에서는 수위/흐름효과의 고려 여부에 따라 5~10%의 유의미한 파고변화가 나타났다.

Keywords

References

  1. Booij, N. (1981). Gravity waves on water with non-uniform depth and current. Report No. 81-1, Dept. of Civil Eng., Delft Univ. of Technology.
  2. Booij, N., Ris, R.C. and Holthuijsen, L.H. (1999). A third-generation wave model for coastal regions 1. Model description and validation, J. of Geophysical Research, 103(C4), 7649-7666.
  3. Hasselmann, K., T. P. Barnett, E. Bouws, H. Carlson, D. E. Cartwright, E. Enke, J. A. Ewing, H. Gienapp, D. E. Hasselmann, P. Kruseman, A. Meerburg, P. Muller, D. J. Olbers, K. Richter, W. Sell and H. Walden (1973). Measurement of wind wave growth and swell decay during the JOint North Sea WAve Project(JONSWAP), Dtsch. Hydrogr. Z. Suppl., Vol. 12(A8), pp. 1-95.
  4. Hedges, T.S., Anastasiou, K. and Gabriel, D. (1985). Interaction of random waves and currents. J. Wtrwy., Port, Coast. And Oc. Engrg., 111(2), 275-288. https://doi.org/10.1061/(ASCE)0733-950X(1985)111:2(275)
  5. Hirose, N., 2011. Inverse estimation of empirical parameters used in a regional ocean circulation model, J. Oceanogr., 67, 323-336. https://doi.org/10.1007/s10872-011-0041-4
  6. Hirose, N., C.H. Kim, and J.H. Yoon (1996). Heat budget in the Japan Sea, J. Oceanogr., 52, 553-574. https://doi.org/10.1007/BF02238321
  7. Hirose, N., K. Takayama, J.H. Moon, T. Watanabe, and Y. Nishida (2013). Regional data assimilation system extended to the East Asian marginal seas, Umi to Sora (Sea and Sky), 89, 43-51.
  8. Kang, S.W., S.J. Ahn, H.M. Eom and H.S. Cho (2009). Design Wave Transformation in Finite Depth due to Wave-Current Interaction. Journal of Korean Society of Coastal and Ocean Engineers, 21(4), 308-315(in Korean).
  9. Kang, T.S., J.J. Park and H.S. Eum (2016). Wave Tendency Analysis on Coastal Waters of Korea Using Wave Hind-Casting Modelling, Journal of the Korean Society of Marine Environment & Safety, Vol.22, No.7, pp.1-7(in Korean). https://doi.org/10.7837/kosomes.2016.22.1.001
  10. Kirby, J.T. (1984). A note on linear surface wave-current interaction over slowly varying topography. J. Geophy. Res., 89(C1), 745-747. https://doi.org/10.1029/JC089iC01p00745
  11. Lee, W.D. and D.S. Hur (2016). Analysis on Mechanism of Wave Attenuation under Wave-Current Interaction. Journal of the Korean Society of Civil Engineers, 36(4), 645-650(in Korean). https://doi.org/10.12652/Ksce.2016.36.4.0645
  12. Longuet-Higgins, M.S. and Stewart, R.W. (1961). The changes of amplitude of short gravity waves on steady non-uniform currents. J. Fluid Mechanics, 10(4), 529-549. https://doi.org/10.1017/S0022112061000342
  13. Perigrine, D.H. (1976). Interaction of Water Waves and Currents. Advances in Applied Mathematics, 16, Academic, New York, 9-17.
  14. RIAMOM homepage(http://dreams-i.riam.kyushu-u.ac.jp/vwp/)
  15. The SWAN team (2008). SWAN Cycle III version 40.72 Technical Documentation.
  16. Yoon, J.H. (1982a). Numerical experiment on the circulation in the Japan Sea, Part I. Formation of the East Korean Warm Current, J. Oceanogr. Soc. Japan, 38, 43-51. https://doi.org/10.1007/BF02110289
  17. Yoon, J.H. (1982b). Numerical experiment on the circulation in the Japan Sea, Part II. Influence of seasonal variations in atmospheric conditions on the Tsushima Current, J. Oceanogr. Soc. Japan, 38, 81-94. https://doi.org/10.1007/BF02110294
  18. Yoon. J.H. (1982c). Numerical experiment on the circulation in the Japan sea, Part III: Formation of the nearshore branch of the Tsushima Current, J. Oceanogr. Soc. Japan, 38, 119-124.
  19. Yoon, J.H. (1982d). Numerical experiment on the circulation in the Japan Sea, Part III: Mechanism of the nearshore branch of the Tsushima Current, J. Oceanogr. Soc. Japan, 38, 125-130. https://doi.org/10.1007/BF02110283

Cited by

  1. Wave Height and Downtime Event Forecasting in Harbour with Complex Topography Using Auto-Regressive and Artificial Neural Networks Models vol.29, pp.4, 2017, https://doi.org/10.9765/KSCOE.2017.29.4.180
  2. A Study on the Predictability of Eastern Winter Storm Waves Using Operational Wind Forecasts of KMA vol.30, pp.5, 2018, https://doi.org/10.9765/KSCOE.2018.30.5.223