DOI QR코드

DOI QR Code

Effects of LED(Light Emitting Diode) Photoperiod and Light Intensity on Growth and Yield of Taraxacum coreanum Nakai in a Plant Factory

식물공장 내 광주기 및 광도가 흰민들레의 생육과 수량에 미치는 영향

  • Hwang, Yeon Hyeon (Gyeongsangnam-do Agricultural Research &Extension Services) ;
  • Park, Ji Eun (Gyeongsangnam-do Agricultural Research &Extension Services) ;
  • Chang, Young Ho (Gyeongsangnam-do Agricultural Research &Extension Services) ;
  • An, Jae Uk (Gyeongsangnam-do Agricultural Research &Extension Services) ;
  • Yoon, Hae Suk (Gyeongsangnam-do Agricultural Research &Extension Services) ;
  • Hong, Kwang Pyo (Gyeongsangnam-do Agricultural Research &Extension Services)
  • Received : 2016.09.07
  • Accepted : 2016.10.18
  • Published : 2016.12.31

Abstract

The objective of this study was to examine the effect of photoperiod and light intensity of RBW LED (red:blue:white = 2:1:1) on the growth of Taraxacum coreanum Nakai in a fully artificial light type plant factory. 3 photoperiods and 4 light intensity were used respectively in a fully artificial light type plant production system. Plants were cultured with three photoperiods and four light intensity regimes (conditions) for 270 and 120 days, respectively, using nutrient film technique (NFT) or aeroponics culture methods. For each photoperiod, the total leaves per plant harvested 8 times in all cultivation period was 224 in the 16/8(day/light) photoperiod that had no significant difference from 220 in the 12/12 photoperiod and the lowest number of leaves was 151 occurred in the 8/16 photoperiod, which means that the longer photoperiod, the more leaves harvest. Total fresh weight of above ground was the high in order of in 16/8 photoperiod as 125g, 12/12 photoperiod as 91g, 8/16 photoperiod as 56g. For each light intensity, the total leaves per plant harvested 4 times in all cultivation period was the great in order of $150{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ as 123, $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ as 107, $100{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ as 95, $50{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ as 56 which was the smallest number of total leaves harvest. Total fresh weight of above ground per plant was the high in order of $150{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ as 43.6g, $100{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ as 34.6g, $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ as 32.2g, $50{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ as 18.2g. From these results, it was concluded that photoperiod of 16/8 and light intensity at $150{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ can be used as the light condition of RBW LED (red:blue:white = 2:1:1) for optimal growth of Taraxacum coreanum Nakai in a fully artificial light type plant factory.

본 연구는 완전 인공광형 식물공장 내에서 RBW LED(red:blue:white = 2:1:1)의 광주기와 광도가 흰민들레 생육에 미치는 영향을 구명하고자 수행하였다. 완전 인공광형 식물공장에서 각각 광주기 3수준과 광도 4수준으로 설정하였고, 분무수경으로 광주기 실험은 270일, 광도 실험은 120일 동안 재배하였다. 광주기별 전 재배기간 동안 8회 수확한 1주당 수확 총엽수는 16/8시간 처리구에서 주당 224매로 12/12시간 처리구의 220매와 비슷하게 많았고 8/16시간 처리구에서 151매로 가장 적어 대체로 명기가 길수록 수확엽수도 많아지는 경향이었다. 지상부 생체중은 16/8h 처리구에서 125g으로 가장 높았고 다음으로 12/12h 처리구 91g, 8/16h 처리구 56g 순이었다. 광도별전 재배기간 동안 총 4회 수확한 엽수는 $150{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ 처리구에서 123매로 가장 많았으며 다음으로 107매인 $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ 처리구와 95매인 $100{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ 처리구 이었고, $50{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ 처리구에서 56매로 가장 적었다. 1주당 지상부 총 생체중은 $150{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ 처리구에서 43.6g으로 가장 높았고 다음으로 $100{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$$200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ 처리구로써 각각 34.6g과 32.2g이었으며 $50{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ 처리구에서 18.2g으로 가장 낮았다. 이상의 결과 흰민들레 최적 생장을 위한 완전 인공광형 식물공장의 RBW LED(red:blue:white = 2:1:1) 조명의 광조건은 광주기 16/8h, 광도 $150{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$이었다.

Keywords

References

  1. Austin J., Y.A. Jeon, M.K. Cha, S.K. Park, and Y.Y. Cho. 2016. Effects of photoperiod, light intensity and electrical conductivity on the growth and yield of quinoa(Chenopodium quinoa Willd) in a closed type plant factory system. Kor. J. Hort. Sci. Technol. 19(4):405-413.
  2. Cha, M.K., J.S. Kim, and Y.Y. Cho. 2012. Growth response of lettuce to various levels of EC and light intensity in plant factory. J. Bio-Env. Con. 21(4):3.5-311.
  3. Cho, S.Y., J.Y. Park, E.M. Park, M.S. Choi, M.K. Lee, S.M. Jeon, M.K. Jang, M.J. Kim, and Y.B. Park. 2002. Alternation of hepatic antioxidant enzyme activities and lipid profile in streptozotocin-induced diabetic rats by supplementation of dandelion extracts water extract. Clin Chim Acta 317:109-117. https://doi.org/10.1016/S0009-8981(01)00762-8
  4. Erwin, J.E. and R.D. Heins. 1991. Temperature and photoperiod effects on Fuchsia$\times$hybrid morphology. J. Amer. Soc. Hort. Sci. 116:955-960.
  5. Goto, E. and T. Takakura. 2003. Reduction of lettuce tipburn by shortening day/night cycle. J. Agric. Meteorol. 59:219-225. https://doi.org/10.2480/agrmet.59.219
  6. Han, E.K., E.J. Jung, J.Y. Lee, Y.X. Jin, and C.K. Chung. 2011. Antioxidative activity of ethanol extracts from different parts of Taraxacum officinale. J. Korean Soc. Food Sci. Nutr. 40:56-62. https://doi.org/10.3746/jkfn.2011.40.1.056
  7. Ikeda, A., S. Nakayama, Y. Kitaya, and K. Yabuki. 1988. Effects of photoperiod, $CO_2$ concentration, and light intensity on growth and net photosynthetic rates of lettuce and turnip. ActaHort. 229:273-282.
  8. Jeon, S.H., D. Son, Y.S. Ryu, S.H. Kim, J.I. Chung, M.C., Kim, and S.I. Shim. 2010. Effect of presowing seed treatments on germination and seedling emergence in Taraxacum platycarpum. Korean J. Medicinal Crop Sci. 18:9-14.
  9. Kim, H.M., J.H. Kang, B.R. Jeong, and S.J. Hwang. 2016. Light quality and photoperiod affect growth of sowthistle(Ixeris dentata Nakai) in a closed-type plant production system. Kor. J. Hort. Sci. 34(1):67-76.
  10. Kim, H.R. and Y. H. You. 2013. Effects of red, white, and farred LED source on growth responses of wasabia japonica seedlings in plant factory. Kor. J. Hort. Sci. Technol. 31(4):415-422.
  11. Kim, Y.S., M.Y. Kim, M.J. Kim, and J.A. Ko. 2004. Expression enhanced green fluorescent protein(EGFB) gene in Taraxacum mongolicum H. Mazz. Kor. J. Hort. Sci. Technol. 22(4):491-494.
  12. Koontz, H.V. and R.P. Prince. 1986. Effect of 16 and 24 hours daily radiation (light) on lettuce growth. HortScience 21:123-124.
  13. Kozai, T. 2007. Propagation, grafting and transplant production in closed systems with artificial lighting for commercialization in Japan. Propagation of Ornamental Plants 7:145-149.
  14. Lee, B.J., M.K. Won, D.H. Lee, and D.G. Shin. 2001. Changes in SPAD chlorophyll value of chrysanthemum(Dendranthema grandiflora Tzvelev) by photoperiod and light intensity. Kor. J. Hort. Sci. Technol. 19(4):555-559.
  15. Lee, G.I., H.J. Kim, S.J. Kim, J.W. Lee, and J.S. Park. 2016a. Increased growth by LED and accumulation of functional materials by florescence lamps in a hydroponics culture system for Angelica gigas. Protected Horticulture and Plant Factory 25(1):42-48. https://doi.org/10.12791/KSBEC.2016.25.1.42
  16. Lee, G.J., J.W. Heo, H.H. Kim, C.R. Jung, D.E. Kim, and S.Y. Nam. 2016b. Effects of artificial light sources on growth and yield of Peucedanum japonicum hydroponically grown in plant factory. Protected Horticulture and Plant Factory 25(1):16-23. https://doi.org/10.12791/KSBEC.2016.25.1.16
  17. Lee, H.H., Y.S. Kim, and H.Y. Park. 2007. Plant regeneration via organogenesis from leaf explant culture of Taraxzcum coreanum Nakai. Korean J. Med. Crop Sci. 15:62-66.
  18. Lee, J.S. and Y.H. Kim. 2014. Growth and anthocyanins of lettuce grown under red or blue light-emitting diodes with distinct peak wavelength. Kor. J. Hort. Sci. Technol. 32(3):330-339.
  19. Min, K.C. and J.W. Jhoo. 2013. Antioxidant activity and inhibitory effect of Taraxacum officinale extracts on nitric oxide production. Korean J. Food Sci. Technol. 45:206-212. https://doi.org/10.9721/KJFST.2013.45.2.206
  20. Okamoto, K., T. Yanagi, S. Takita, T. Higuchi, Y. Ushida, and H. Watanabe. 1996. Development of plant growth apparatus using blue and red LED as artificial light source. Acta-Hort. 440:111-116.
  21. Park, J.E., Y.G. Park, B.R. Jeong, and S.J. Hwang. 2012. Growth and anthocyanin content of lettuce as affected by artificial light source and photoperiod in a closed-type plant production system. Kor. J. Hort. Sci. Technol. 30(6):673-679.
  22. Park, J.E., Y.G. Park, B.R. Jeong, and S.J. Hwang. 2013. Growth of lettuce in closed-type plant production system as affected by light intensity and photoperiod under influence of white LED light. Protected Horticulture and Plant Factory 22(3):228-233. https://doi.org/10.12791/KSBEC.2013.22.3.228
  23. Park, M.H. and Y.B. Lee. 1999. Effects of light intensity and nutrient level on growth and quality of leaf lettuce in a plant factory. J. Bio-Env. Con. 8(2):108-114.
  24. Park, M.S., D.O. Lim, and H.S. Kim. 2011. Distribution and managemint of naturalized plants in the eastern area of jeollanamdo, Korea. Kor. J. Plan Res. 24:489-498. https://doi.org/10.7732/kjpr.2011.24.5.489
  25. Takatsuji, M. 2008. Definition and meaning of the plant factory. P. 8-13. In Takatsuji, M. (ed.) Plant factory. World Science Publishment, Seoul.
  26. Takasaki, M., T. Konoshima, H. Tokuda, K. Masuda, Y. Arai, K. Shiojima, and H. Ageta. 1999. Anti-carcinogenic activity of Taraxacum plant. I. Biol. Pharm. Bull. 22:602-605. https://doi.org/10.1248/bpb.22.602
  27. Yoon, C.G. and H.K. Choi. 2011. A study on the various light source radiation conditions and use of LED illumination for plant factory. Journal of KIIEE 25(10):14-22.
  28. Yoon, J.S., S.Y. Song, M.J. Cheong, D.S. Kim, and H.H. Lee. 2014. The effect of the hot water extract from Taraxacum coreanum Nakai on hepatocarcinogenesis induced by Nnitrosodiethylamine in rats. Kor. J. Pharmacogn. 45:62-68.
  29. Yun, S.I., H.R. Cho, and H.S. Choi. 2002. Anticoagulant from Taraxacum platycarpum. Biosci Biotechnol Biochem. 66:1589-1864.