DOI QR코드

DOI QR Code

Spatio-temporal Structure of Diurnal and Semidiurnal Tides in Geopotential Height Field

지위고도장의 일주기 및 반일주기 조석의 시공간적 구조

  • Cho, Hyeong-Oh (School of Earth and Environmental Sciences, Seoul National University) ;
  • Son, Seok-Woo (School of Earth and Environmental Sciences, Seoul National University) ;
  • Lee, Yong-Hee (Numerical Data Application Division, National Institute of Meteorological Science)
  • 조형오 (서울대학교 지구환경과학부) ;
  • 손석우 (서울대학교 지구환경과학부) ;
  • 이용희 (국립기상과학원 수치자료응용과)
  • Received : 2016.05.03
  • Accepted : 2016.12.15
  • Published : 2016.12.31

Abstract

The diurnal and semidiurnal tides in the global atmosphere are examined using 3-hourly geopotential height field of the state-of-the-art reanalysis data. Unlike the previous studies, the spatial structure and seasonality of those tides are analyzed from the surface of the earth to the stratosphere. It is found that, at most levels, diurnal tide is strong in the midlatitudes while semidiurnal tide is predominant in the tropics. The former shows strong seasonal cycle with a larger amplitude in summer than in winter in both hemispheres. This is different from the semidiurnal tide which has essentially no seasonal cycle. In term of the vertical structure, while semidiurnal tide has a barotropic structure, diurnal tide exhibits a distinct vertical structure with increased amplitude and height. Especially tropical diurnal tide exhibits a nearly opposite phase from the surface to the free troposphere, and to the upper stratosphere. Its amplitude also varies nonlinearly with height, possibly influenced by water vapor, ozone, gravity waves and solar radiation.

본 연구에서는 전구에 걸쳐 나타나는 대기의 일주기 및 반일주기 조석을 최신의 3시간 간격 재분석자료를 이용하여 분석하였다. 선행연구들과는 달리 조석의 공간구조 및 계절성에 대한 분석이 표면으로부터 성층권에 걸쳐 수행되었다. 대부분의 층에서 일주기 조석은 중위도 지역에서 강한 반면, 반일주기 조석은 열대 지역에서 지배적으로 나타난다. 일주기 조석은 각 반구의 겨울철보다 여름철에 그 크기가 강하게 나타나는 강한 계절적 변동성을 보인다. 반면에 반일주기 조석은 계절적 변동성을 보이지 않는다. 반일주기 조석은 연직구조를 거의 가지지 않으나, 일주기 조석은 높이에 따라 그 크기가 증가하는 뚜렷한 연직구조를 가진다. 특히 열대지역 일주기 조석은 표면과 자유 대류권, 상층 성층권에서 거의 반대의 위상을 보인다. 그 크기 역시 고도에 따라 비선형적으로 변화하여 수증기, 오존, 중력파 그리고 태양복사에 영향을 받았을 가능성을 시사한다.

Keywords

References

  1. Butler, S.T. and Small, K.A., 1963, The excitation of atmospheric oscillations. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society, 91-121.
  2. Chapman, S., 1951, Some phenomena of the upper atmosphere. Proceedings of the Physical Society. Section B, 64, 833.
  3. Chapman, S. and Westfold, K., 1956, A comparison of the annual mean solar and lunar atmospheric tides in barometric pressure, as regards their worldwide distribution of amplitude and phase. Journal of Atmospheric and Terrestrial Physics, 8, 1-23. https://doi.org/10.1016/0021-9169(56)90087-3
  4. Chen, T.C., Yen, M.C., and Schubert, S., 2001, Diurnal variation of pressure-heights: A vertical phase shift. Journal of climate, 14, 3793-3797. https://doi.org/10.1175/1520-0442(2001)014<3793:DVOPHA>2.0.CO;2
  5. Dai, A. and Deser, C., 1999, Diurnal and semidiurnal variations in global surface wind and divergence fields. Journal of Geophysical Research: Atmospheres, 104, 31109-31125. https://doi.org/10.1029/1999JD900927
  6. Dai, A. and Wang, J., 1999, Diurnal and semidiurnal tides in global surface pressure fields. Journal of the atmospheric sciences, 56, 3874-3891. https://doi.org/10.1175/1520-0469(1999)056<3874:DASTIG>2.0.CO;2
  7. den Dool, H., Saha, S., Schemm, J., and Huang, J., 1997, A temporal interpolation method to obtain hourly atmospheric surface pressure tides in Reanalysis 1979-1995. Journal of Geophysical Research: Atmospheres, 102, 22013-22024. https://doi.org/10.1029/97JD01571
  8. Forbes, J.M. and Garrett, H.B., 1979, Theoretical studies of atmospheric tides. Reviews of Geophysics, 17, 1951-1981. https://doi.org/10.1029/RG017i008p01951
  9. Forbes, J., Zhang, X., Palo, S., Russell, J., Mertens, C., and Mlynczak, M., 2008, Tidal variability in the ionospheric dynamo region. Journal of Geophysical Research: Space Physics, 113.
  10. Hamilton, K., 1981, Latent heat release as a possible forcing mechanism for atmospheric tides. Monthly Weather Review, 109, 3-17. https://doi.org/10.1175/1520-0493(1981)109<0003:LHRAAP>2.0.CO;2
  11. Haurwitz, B., 1965a, The diurnal surface-pressure oscillation. Archiv fr Meteorologie, Geophysik und Bioklimatologie, Serie A, 14, 361-379. https://doi.org/10.1007/BF02253483
  12. Haurwitz, B., 1965b, Atmospheric tides. Possible Responses of Weather Phenomena to Variable Extra-Terrestrial Influences, 107.
  13. Haurwitz, B. and Cowley, A.D., 1973, The diurnal and semidiurnal barometric oscillations global distribution and annual variation. pure and applied geophysics, 102, 193-222. https://doi.org/10.1007/BF00876607
  14. Heo, B.H. and Kim, K.E., 1996, Estimation of Diurnal Temperature Variations by an Exponential Model and a Fourier Analysis. Journal of Korean Earth Science Society, 17, 279-286 (in Korean)
  15. Hsu, H.H. and Hoskins, B.J., 1989, Tidal fluctuations as seen in ECMWF data. Quarterly Journal of the Royal Meteorological Society, 115, 247-264. https://doi.org/10.1002/qj.49711548603
  16. Jung, J.-H. and Suh, M.-S., 2005, Characteristic and types of the diurnal variation of hourly precipitation during rainy season over south Korea. Journal of the Korean Meteorological Society, 41, 4, 2005, p. 533-546 (in Korean)
  17. Kang, D.I., 2010, Diurnal variation of equivalent width of $H_2O$ and $O_2$ in earth's atmosphere. Journal of Korean Earth Science Society, 31, 348-353 (in Korean) https://doi.org/10.5467/JKESS.2010.31.4.348
  18. Kim, B.K., Lee, D.I., Kim, J.C., and Lee., J.H., 2012, Characteristics of diurnal variation of high PM2.5 concentration by spatio-temporal wind system in Busan, Korea. Journal of Korean Earth Science Society, 33, 469-480 (in Korean) https://doi.org/10.5467/JKESS.2012.33.6.469
  19. Lee, G.H. and Seo, K.H., 2008, Analysis of diurnal and semidiurnal cycles of precipitation over south Korea. Atmosphere, Kor. Meteor. Soc., 18(4), 475-483 (in Korean)
  20. Lim, G.H. and Kwon, H.J., 1998, Diurnal variation of precipitations over south Korea and its implication. Journal of Korean Meteorological Society, 37, 2, 1998 (in Korean)
  21. Lindzen, R.S., 1966, On the theory of the diurnal tide. Mon. Wea. Rev, 94, 295-301. https://doi.org/10.1175/1520-0493(1966)094<0295:OTTOTD>2.3.CO;2
  22. Lindzen, R.S., 1967, Thermally driven diurnal tide in the atmosphere. Quarterly Journal of the Royal Meteorological Society, 93, 18-42. https://doi.org/10.1002/qj.49709339503
  23. Lindzen, R.S. and Chapman, S., 1969, Atmospheric tides. Space Science Reviews, 10, 3-188.
  24. Lindzen, R.S. and Hong, S.S., 1974, Effects of mean winds and horizontal temperature gradients on solar and lunar semidiurnal tides in the atmosphere. Journal of the atmospheric sciences, 31, 1421-1446. https://doi.org/10.1175/1520-0469(1974)031<1421:EOMWAH>2.0.CO;2
  25. Miyahara, S., Yoshida, Y., and Miyoshi, Y., 1993, Dynamic coupling between the lower and upper atmosphere by tides and gravity waves. Journal of atmospheric and terrestrial physics, 55, 1039-1053. https://doi.org/10.1016/0021-9169(93)90096-H
  26. Ray, R.D., 2001, Comparisons of global analyses and station observations of the S 2 barometric tide. Journal of Atmospheric and Solar-Terrestrial Physics, 63, 1085-1097. https://doi.org/10.1016/S1364-6826(01)00018-9
  27. Ray, R. and Ponte, R., 2003, Barometric tides from ECMWF operational analyses. Annales Geophysicae, 1897-1910. https://doi.org/10.5194/angeo-21-1897-2003
  28. Sakazaki, T., Fujiwara, M., Zhang, X., Hagan, M.E., and Forbes, J.M., 2012, Diurnal tides from the troposphere to the lower mesosphere as deduced from TIMED/SABER satellite data and six global reanalysis data sets. Journal of Geophysical Research-Atmospheres, 117, 21.
  29. Whiteman, C.D. and Bian, X., 1996, Solar semidiurnal tides in the troposphere: Detection by radar profilers. Bulletin of the American Meteorological Society, 77, 529-542. https://doi.org/10.1175/1520-0477(1996)077<0529:SSTITT>2.0.CO;2