DOI QR코드

DOI QR Code

Retrieval of Fire Radiative Power from Himawari-8 Satellite Data Using the Mid-Infrared Radiance Method

히마와리 위성자료를 이용한 산불방사열에너지 산출

  • Kim, Dae Sun (Department of Spatial Information Engineering, Pukyong National University) ;
  • Lee, Yang Won (Department of Spatial Information Engineering, Pukyong National University)
  • 김대선 (부경대학교 공간정보시스템공학과) ;
  • 이양원 (부경대학교 공간정보시스템공학과)
  • Received : 2016.12.01
  • Accepted : 2016.12.23
  • Published : 2016.12.31

Abstract

Fire radiative power(FRP), which means the power radiated from wildfire, is used to estimate fire emissions. Currently, the geostationary satellites of East Asia do not provide official FRP products yet, whereas the American and European geostationary satellites are providing near-real-time FRP products for Europe, Africa and America. This paper describes the first retrieval of Himawari-8 FRP using the mid-infrared radiance method and shows the comparisons with MODIS FRP for Sumatra, Indonesia. Land surface emissivity, an essential parameter for mid-infrared radiance method, was calculated using NDVI(normalized difference vegetation index) and FVC(fraction of vegetation coverage) according to land cover types. Also, the sensor coefficient for Himawari-8(a = 3.11) was derived through optimization experiments. The mean absolute percentage difference was about 20%, which can be interpreted as a favourable performance similar to the validation statistics of the American and European satellites. The retrieval accuracies of Himawari FRP were rarely influenced by land cover types or solar zenith angle, but parts of the pixels showed somewhat low accuracies according to the fire size and viewing zenith angle. This study will contribute to estimation of wildfire emissions and can be a reference for the FRP retrieval of current and forthcoming geostationary satellites in East Asia.

산불방사열에너지(fire radiative power)는 산불로부터 방출되는 에너지로서 산불의 연소과정에서 발생하는 온실가스를 추정하기 위한 기초자료로 이용된다. 유럽, 아프리카, 아메리카 지역의 정지궤도 위성센서들은 준실시간의 산불방사열에너지를 산출 및 제공하고 있지만 아시아권에는 아직까지 정지궤도 위성기반의 공식적인 산불방사열에너지 산출물이 제공되지 않고 있다. 본 연구에서는 중적외 복사휘도법(mid-infrared radiance method)을 이용하여 히마와리(Himawari-8) 위성 기반의 산불방사열에너지를 최초로 산출하였으며, 산출정확도를 검증하기 위해 인도네시아 수마트라 지역에 대해 Aqua/Terra 위성의 MODIS(moderate resolution imaging spectroradiometer) 산불방사열에너지 산출물과의 비교검증을 실시하였다. 이 과정에서 NDVI(normalized difference vegetation index)와 FVC(fraction of vegetation coverage)를 이용하여 중적외 복사휘도법의 중요인자인 지표면 방출률을 지면피복 종류에 따라 계산하였으며, 최적화 실험을 통하여 히마와리 AHI(advanced Himawari imager)의 센서계수 a = 3.11을 도출하였다. 본 연구를 통해 산출된 히마와리 산불방사열에너지는 MODIS를 기준으로 약 20%의 평균절대백분비오차를 나타내었으며 이는 미국과 유럽연합의 정지궤도위성의 산불방사열에너지 검증결과와 유사한 수준의 정확도로 평가된다. 히마와리 산불방사열에너지의 산출정확도는 산불의 크기와 위성관측각에 따라 일부 차이를 보였으나 태양천정각과 토지피복에 따른 영향은 거의 없는 것을 알 수 있었다. 이 연구는 아시아권의 정지궤도위성 산불방사열에너지 산출을 위한 참고자료로서 활용가치가 있으며 산불방출 온실가스 추정에 기초자료로 활용될 수 있을 것으로 기대한다.

Keywords

References

  1. Becker, F. and Li, Z. L., 1990, Towards a local split window method over land surfaces, International Journal of Remote Sensing, Vol. 11, No. 3, pp. 369-393. https://doi.org/10.1080/01431169008955028
  2. Dozier, J., 1981, A method for satellite identification of surface temperature fields of subpixel resolution, Remote Sensing of Environment, Vol. 11, pp. 221-229. https://doi.org/10.1016/0034-4257(81)90021-3
  3. Giglio, L., Descloitres, J., Justice, C. O. and Kaufman, Y. J., 2003, An enhanced contextual fire detection algorithm for MODIS, Remote Sensing of Environment, Vol. 87, No. 2, pp. 273-282. https://doi.org/10.1016/S0034-4257(03)00184-6
  4. Giglio, L. and Kendall, J. D., 2001, Application of the Dozier retrieval to wildfire characterization: a sensitivity analysis, Remote Sensing of Environment, Vol. 77, No. 1, pp. 34-49. https://doi.org/10.1016/S0034-4257(01)00192-4
  5. Gillespie, A. R., Rokugawa, S., Matsunaga, T., Cothern, J. S., Hook, S. J. and Kahle, A. B., 1998, A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images, IEEE Transactions on Geoscience and Remote Sensing, Vol. 36, No. 4, pp. 1113-1126. https://doi.org/10.1109/36.700995
  6. Kaufman, Y. J., Kleidman, R. G. and King, M. D., 1998, SCAR-B fires in the tropics: properties and remote sensing from EOS-MODIS, Journal of Geophysical Research: Atmospheres, Vol. 103, No. D24, pp. 31955-31968. https://doi.org/10.1029/98JD02460
  7. Kerr, Y. H., Lagouarde, J. P. and Imbernon, J., 1992, Accurate land surface temperature retrieval from AVHRR data with use of an improved split window algorithm, Remote Sensing of Environment, Vol. 41, No. 2, pp. 197-209. https://doi.org/10.1016/0034-4257(92)90078-X
  8. Li, Z., Wu, H., Wang, N., Qiu, S., Sobrino, J. A., Wan, Z., Tang, B. and Yan, G., 2013, Land surface emissivity retrieval from satellite data, International Journal of Remote Sensing, Vol. 34, No. 9-10, pp. 3084-3127. https://doi.org/10.1080/01431161.2012.716540
  9. Miller, J. D. and Safford, H. D., 2012, Trend in wildfire severity : 1984 to 2010 in the Sierra Nevada, Modoc Plateau, and Southern Cascades, USA, Fire Ecology, Vol. 8, No. 3, pp. 41-57. https://doi.org/10.4996/fireecology.0803041
  10. Park, J. H., Cho, A., Kang, J. H. and Suh, M. S., 2011, Detection and correction of noisy pixels embedded in NDVI time series based on the spatio-temporal continuity, Atmosphere, Vol. 21, No. 4, pp. 337-347.
  11. Park, K. H. and Suh, M. S., 2013, Inter-comparison of three land surface emissivity data sets (MODIS, CIMSS, KNU) in the Asian-Oceanian regions, Korean Journal of Remote Sensing, Vol. 29, No. 2, pp. 219-233. https://doi.org/10.7780/kjrs.2013.29.2.6
  12. Peterson, D., Wang, J., Ichoku, C., Hyer, E. and Ambrosia, V., 2013, A sub-pixel-based calculation of fire radiative power from MODIS observations: 1 algorithm development and initial assessment, Remote Sensing of Environment, Vol. 129, pp. 262-279. https://doi.org/10.1016/j.rse.2012.10.036
  13. Roberts, G. J., and Wooster, M. J., 2008, Fire detection and fire characterization over Africa using Meteosat SEVIRI, IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 4, pp. 1200-1218. https://doi.org/10.1109/TGRS.2008.915751
  14. Roberts, G. J., Wooster, M. J., Perry, G. L. W., Drake, N., Rebelo, L. M. and Dipotso, F., 2005, Retrieval of biomass combustion rates and totals from fire radiative power observations: application to Southern Africa using geostationary SEVIRI imagery, Journal of Geophysical Research: Atmospheres, Vol. 110, No. D21, doi:10.1029/ 2005JD006018.
  15. Sobrino, J. A., Jimenez-Muoz, J. C., Soria, G., Romaguera, M., Guanter, L., Moreno, J., Plaza, A. and Martinez, P., 2008, Land surface emissivity retrieval from different VNIR and TIR sensors, IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 2, pp. 316-327. https://doi.org/10.1109/TGRS.2007.904834
  16. World Meteorological Organization, 2016, Observing Systems Capability Analysis and Review Tool, WMO, http://www.wmo-sat.info/oscar/gapanalyses?view=61
  17. Wooster, M. J., Roberts, G. and Perry, G. L. W., 2005, Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release, Journal of Geophysical Research: Atmospheres, Vol. 110, No. D24, doi:10.1029/2005JD006318.
  18. Wooster, M. J., Zhukov, B. and Oertel. D., 2003, Fire radiative energy for quantitative study of biomass burning: derivation from the BIRD experimental satellite and comparison to MODIS fire products, Remote Sensing of Environment, Vol. 86, No. 1, pp. 83-107. https://doi.org/10.1016/S0034-4257(03)00070-1
  19. Xu, W., Wooster, M. J., Roberts, G. and Freeborn, P., 2010, New GOES imager algorithms for cloud and active fire detection and fire radiative power assessment across North, South and Central America, Remote Sensing of Environment, Vol. 114, No. 9, pp. 1876-1895. https://doi.org/10.1016/j.rse.2010.03.012

Cited by

  1. 히마와리 위성의 산불방사열에너지 자료를 이용한 산불배출가스 추정: 2017년 삼척 및 강릉 산불을 사례로 vol.33, pp.6, 2016, https://doi.org/10.7780/kjrs.2017.33.6.1.11