DOI QR코드

DOI QR Code

Effect of AP Particle Size on the Physical Properties of HTPB/AP Propellant

AP 입자가 HTPB/AP 추진제의 물리적 특성에 미치는 효과

  • Yim, Yoo Jin (Development Team, Daejeon Plant, Hanwha Corporation) ;
  • Park, Eun Ji (Development Team, Daejeon Plant, Hanwha Corporation) ;
  • Kwon, Tae Ha (Development Team, Daejeon Plant, Hanwha Corporation) ;
  • Choi, Seong Han (Development Team, Daejeon Plant, Hanwha Corporation)
  • Received : 2015.11.30
  • Accepted : 2015.12.22
  • Published : 2016.02.01

Abstract

The viscosity and mechanical property of HTPB/AP composite solid propellant are profoundly affected by particle size of AP. In HTPB/AP propellant formulated by two mode of AP size such as $190{\mu}m$ and $7{\mu}m$, the propellant was found to be much less viscose at end of mix when coarse/fine AP ratio is ranged from 70/30 to 60/40 due to high solid packing fraction. It was shown that the toughness of tensile strength test for HTPB/AP propellant increased with the increase in coarse AP. Considering both lower viscosity and better tensile strength, the optimum ratio of AP coarse/fine was estimated to be 70/30.

HTPB/AP계 혼합형 고체 추진제의 점도와 기계적 특성은 산화제인 AP의 입자 크기에 크게 영향을 받는다. $190{\mu}m$의 크기의 AP와 $7{\mu}m$ 크기의 AP를 사용한 HTPB/AP 추진제에서 큰 입자/작은 입자의 비율이 70/30~60/40 범위인 조성의 추진제가 매우 낮은 점도를 나타났는데, 이것은 고체입자의 충전율이 높은 상태이기 때문이다. 추진제의 인장강도 시험에서 Toughness는 큰 입자의 함량이 많아질수록 증가하는 것으로 나타났다. 낮은 점도와 좋은 인장강도를 동시에 고려할 때, AP 큰 입자와 작은 입자를 70/30으로 사용하는 것이 가장 효과적인 것으로 분석되었다.

Keywords

References

  1. Oberth, A.E., Principles of Solid Propellant Development, CPIA Publication, Baltimore, MD, USA, Ch 5, 1987.
  2. Sutton, G.P. and Biblarz, O., Rocket Propulsion Elements, 8th ed., John Wiley & Sons Inc., New York, N.Y., USA, 2010.
  3. Yim, Y.J., "A Study on the Burning Rate of Composite Solid Propellant," Ph. D. Thesis, Yonsei University, 1983.
  4. Ha, J.S. and Kim, J.H., "Pressure-Induced Crack Propagation Behavior in A Particle-Reinforced Composite," International Journal of Modern Physics: Conference Series, Vol. 6, pp. 178-183, 2012. https://doi.org/10.1142/S2010194512003145
  5. Maraden, A.M. and Mostafa, H.E., "Experimental and Numerical Investigation for the Combustion of Bimodal Pre-packed AP based Composite Propellant," 44th International Annual Conference of the Fraunhofer ICT, Karlsruhe, Germany, V26, June 2013.
  6. McGeary, R.K., "Mechanical Packing of Spherical Particles," Journal of the American Ceramic Society, Vol. 44, No. 10, pp. 513-522, 1961. https://doi.org/10.1111/j.1151-2916.1961.tb13716.x
  7. Dorr, A., Sadiki, A. and Mehdizadeh, A., "A Discrete Model for the Apparent Viscosity of Polydisperse Suspensions Including Maximum Packing Fraction," Journal of Rheology, Vol. 57, No. 3, pp. 1-14, 2013. https://doi.org/10.1122/1.4754444
  8. Horine, C.L. and Madison, E.W., "Solid Propellant Processing Factors in Rocket Motor Design," NASA SP-8075, 1971.
  9. Fedele, D., Ponti, F, Bertacin R., Ravaglioli, V. and Mancini, G., "Analytical Model and Numerical Simulations for Solid Propellant Using a Random Loose Packing Approach," 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Cleveland, OH, USA, AIAA 2014-4019, July 2014.
  10. Kim, C.K., Hwang, K.S. and Yim, Y.J., "Propellant for Rocket Propulsion System," Korea Patent, 10-0551205, 3 Feb. 2006.
  11. Lengelle, G., Duterque J. and Trubert, J.F., "Combustion of Solid Propellants," NATO, RTO Educational Notes EN-023, 2002.
  12. Kim, C.K., Yoo, J.C, Hwang, K.S, and Yim, Y.J., "Properties of HTPB/AP/Butacene Propellants," Journal of the Korean Society of Propulsion Engineers, Vol. 9, No. 2, pp. 40-45, 2005.
  13. Kim, J.H., Yim, Y.J., Kim, I.C., Park, Y.C., Seo, T.S., Jeong, J.Y. and Yoo, J.C., "Increasing the Burning Rate of Solid Propellants," 2009 Spring Conference, Korean Society of Propulsion Engineers, Jeonju, Korea, pp. 169-172, May 2009.
  14. Yim, Y.J., "Burning Rate Catalytic Effects of $Fe_2O_3$ and $Cr_2O_3$, in Composite Propellants," Korean Chemical Engineering Research, Vol. 25, No. 5, pp. 442-446, 1987.