DOI QR코드

DOI QR Code

A Study on the Feedforward Control Algorithm for Dynamic Positioning System Using Ship Motion Prediction

선체운동 예측을 이용한 Dynamic Positioning System의 피드포워드 제어 알고리즘에 관한 연구

  • Song, Soon-Seok (Department of Naval Architecture and Ocean Engineering, Inha University) ;
  • Kim, Sang-Hyun (Department of Naval Architecture and Ocean Engineering, Inha University) ;
  • Kim, Hee-Su (Department of Naval Architecture and Ocean Engineering, Inha University) ;
  • Jeon, Ma-Ro (Department of Naval Architecture and Ocean Engineering, Inha University)
  • 송순석 (인하대학교 조선해양공학과) ;
  • 김상현 (인하대학교 조선해양공학과) ;
  • 김희수 (인하대학교 조선해양공학과) ;
  • 전마로 (인하대학교 조선해양공학과)
  • Received : 2015.12.04
  • Accepted : 2016.02.25
  • Published : 2016.02.28

Abstract

In the present study we verified performance of feed-forward control algorithm using short term prediction of ship motion information by taking advantage of developed numerical simulation model of FPSO motion. Up until now, various studies have been conducted about thrust control and allocation for dynamic positioning systems maintaining positions of ships or marine structures in diverse sea environmental conditions. In the existing studies, however, the dynamic positioning systems consist of only feedback control gains using a motion of vessel derived from environmental loads such as current, wind and wave. This study addresses dynamic positioning systems which have feedforward control gain derived from forecasted value of a motion of vessel occurred by current, wind and wave force. In this study, the future motion of vessel is forecasted via Brown's Exponential Smoothing after calculating the vessel motion via a selected mathematical model, and the control force for maintaining the position and heading angle of a vessel is decided by the feedback controller and the feedforward controller using PID theory and forecasted vessel motion respectively. For the allocation of thrusts, the Lagrange Multiplier Method is exploited. By constructing a simulation code for a dynamic positioning system of FPSO, the performance of feedforward control system which has feedback controller and feedforward controller was assessed. According to the result of this study, in case of using feedforward control system, it shows smaller maximum thrust power than using conventional feedback control system.

본 연구의 목적은 가까운 미래의 선박운동정보를 이용하는 피드포워드 제어알고리즘과 FPSO 운동 수치 시뮬레이션 모델을 개발하고 시뮬레이션을 통하여 제어알고리즘의 성능을 검증하는 것이다. 본 논문에서는 조류, 바람, 파력 등의 환경하중에 의하여 발생한 선체운동의 미래 예측치를 활용한 피드포워드 제어력을 추가적으로 가지는 Dynamic Positioning System에 대하여 연구한다. 먼저, 조류력, 풍력 및 파력에 대한 수학모델을 선정하여 환경하중에서의 선체운동을 계산하고, 현재의 선체운동 값과 Brown 지수평활 예측모형을 활용하여 미래 선체운동 값을 예측하였다. 또한 위치 유지와 Heading angle 제어를 위한 제어력을 PID(Proportional-Integral-Derivative)이론을 이용하여 결정한 피드백 제어기와 미래 선체운동 값을 이용하여 결정한 피드포워드 제어기로 구성하였다. 그리고 각 Thruster에 요구되는 추력은 라그랑지승수법을 활용하여 분배하였다. 마지막으로 FPSO(Floating Production Storage and Offloading)의 운동과 Dynamic Positioning System에 대한 시뮬레이션 모델을 구축하여 선박의 위치 및 Heading angle 제어에 관한 시뮬레이션을 수행하여 제안하는 피드백 제어기와 피드포워드 제어기를 동시에 가지는 제어시스템의 성능을 평가하였다. 본 연구의 결과, 피드백 및 피드 포워드 제어기가 적용된 DPS 제어시스템이 기존의 피드백 제어기보다 위치유지 및 헤딩각 유지 능력에서 개선되었고 각 Thruster에 요구되는 평균 제어력 및 최대 제어력의 크기도 감소함을 보였다. 이에 따라 DPS에 요구되는 동력 감축과 Azimuth Thruster 용량의 감소로 인하여 비용 절감의 효과를 기대할 수 있다.

Keywords

References

  1. Blendermann, W.(1994), Parameter Identification of Wind Loads on Ships, Journal of Wind Engineering and Industrial Aerodynamics JWEIA-51, pp. 339-351. https://doi.org/10.1016/0167-6105(94)90067-1
  2. Choi, J. W., S. W. Kim, M. C. Ryu and Y. S. Kim(2012), Analysis of the effect based on Azimuth Thruster design parameter, The Korean Society for Marine Environment & Energy, pp. 858-863.
  3. Kim, S. G., H. R. Yoo and S. B. Kim(1995), Experimental Study on Dynamic Positioning Control of a Semi-Submergible Platform, Transactions of the Korean Society of Mechanical Engineers, Vol. 19, No. 3, pp. 661-669. https://doi.org/10.22634/KSME.1995.19.3.661
  4. Lee, D. Y. and M. K. Ha(2001), An Experimental Method of Model Installed Dynamic Positioning System for Drillship, Journal of the Society of Naval Architects of Korea, Vol. 38, No. 2, pp. 33-43.
  5. Lee, W. W.(2009), Statistical methods for forecasting, Jayooacademi, pp. 35-72.
  6. Mahfouz, A. B. and H. W. El-Tahan(2006), On the Use of the Capability Polar Plots Program for Dynamic Positioning Systems for Marine Vessels, Ocean Engineering, Volume 33, Issues 8-9, pp. 1070-1089. https://doi.org/10.1016/j.oceaneng.2005.08.006
  7. Tannuri, E. A., A. C. Agostinho, H. M. Morishita and L. Moratelli Jr.(2010), Dynamic Positioning Systems: An Experimental Analysis of Sliding Mode Control, Control Engineering Practice, Volume 18, Issue 10, pp. 1121-1132. https://doi.org/10.1016/j.conengprac.2010.06.007
  8. Fossen, T. I.(1994), Guidance and Control of Ocean Vehicles. Wiley, pp. 57-90.
  9. Fossen, T. I.(2011a), Handbook of marine craft hydrodynamics and motion control, Wiley, pp. 152-156.
  10. Fossen, T. I.(2011b), Handbook of marine craft hydrodynamics and motion control, Wiley, pp. 187-226.
  11. Fossen, T. I.(2011c), Handbook of marine craft hydrodynamics and motion control, Wiley, pp. 372-384.
  12. Fossen, T. I.(2011d), Handbook of marine craft hydrodynamics and motion control, Wiley, pp. 398-416.

Cited by

  1. Motion predictive control for DPS using predicted drifted ship position based on deep learning and replay buffer vol.12, pp.None, 2016, https://doi.org/10.1016/j.ijnaoe.2020.09.004