DOI QR코드

DOI QR Code

What are the Possible Roles of CO2 on Stomatal Mechanism?

기공 메커니즘에 대한 CO2의 역할은 무엇인가?

  • Lee, Joon Sang (Dept. of Biology Education, Chungbuk National Univ.)
  • 이준상 (충북대학교 생물교육학과)
  • Received : 2015.10.20
  • Accepted : 2016.01.19
  • Published : 2016.02.29

Abstract

How does $CO_2$ affect on the stomatal mechanism? The mechanism of stomatal opening by $CO_2$ is not clear as it is difficult to see $CO_2$ effect on light-induced stomatal opening. Furthermore, stomata may react differently according to the concentration of $CO_2$. The significance of the possible endogenous rhythms must consider to understand on $CO_2$-related response. It is clear that $CO_2$ has an effect on the accumulation of osmotic materials which determines the degree of stomatal apertures because it is known that stomata open in the condition of the reduced $CO_2$ concentration. However, it is not fully understood how $CO_2$ leads to the stomatal opening. It has been thought that $CO_2$ can not affect on the ion fluxes which determines the increase of osmotic potential in guard cells. However, in this study, the changes of guard cell membrane permeability by $CO_2$ have been focused on. There are many reports that $CO_2$ related reactions are dominant when the leaf is exposed to certain a mount of $CO_2$. The hypothesis of the stomatal opening by light is based on the increase of osmotic materials in guard cells including $K^+$, $Cl^-$, sucrose and $malate^{2-}$. It was reported that $CO_2$ induced a big hyperpolarization indicating that $H^+$ was extruded to the cell outside. It was also found that $CO_2$ caused guard cell membrane hyperpolarization in the intact leaf up to 3 or 4 times higher than that of light induced membrane hyperpolarization. These results represent that $CO_2$ can affect on the change of physical characteristics which affects on the change of the membrane permeability.

$CO_2$는 기공 메커니즘에 어떤 영향을 주는가? 햇빛에 의해 유도된 기공 열림에서 독립적인 $CO_2$의 효과를 분리해서 본다는 것은 어려운 일이기 때문에, $CO_2$에 의한 기공 열림 메커니즘은 아직 명확하게 밝혀지지 않은 실정이다. 기공은 또한 $CO_2$ 농도에 따라 다르게 반응 할 수 있다. 기공 열림과 닫힘의 식물의 생체적인 리듬도 관여하므로, $CO_2$의 반응에 대한 해석은 많은 요소들을 고려해야 한다. 세포간극 내강 ($C_i$)의 감소된 $CO_2$에서는 기공을 열린다는 것이 일반적으로 정해진 사실이다. 기공 열림의 정도를 결정하는 것은 삼투 물질이고, $CO_2$가 삼투 물질의 수송에 영향을 준다고 가정하는 것이 $CO_2$가 기공 메커니즘에 영향을 주는 유일한 방법이다. 그러나 $CO_2$가 어떻게 공변세포 내의 삼투물질 농도에 영향을 주는지 그 메커니즘은 불분명하다. 지금까지, $CO_2$는 공변세포의 삼투퍼텐셜을 증가시키는 이온과 유기물이 어떻게 공변세포 막을 통한 수송 메커니즘이 이루어지는지는 알려진 것이 없다. 따라서 이 연구에서는 $CO_2$에 의한 삼투물질들의 공변세포 막 투과성에 대해 초점을 두었다. 잎을 일정한 농도의 $CO_2$에 노출할 때 $CO_2$-관련된 반응들이 나타난다. 빛에 의한 기공 열림의 가설은 $K^+$, $Cl^-$, 슈크로스 그리고 말산$^{2-}$를 포함하는 공변세포 내 삼투물질 농도의 증가에 있다. $CO_2$$H^+$를 세포 밖으로 방출하는 것을 나타내는 막의 과분극 (hyperpolarization)을 유도했다는 보고가 있다. 이는 $CO_2$가 막 투과성에 관련된 첫 번째 증거이다. 온전한 잎에서 $CO_2$는 빛에 의해 유도된 막의 과분극보다 3~4 배까지 공변세포의 막 과분극을 유도했다. 이러한 결과들은 $CO_2$가 막 투과성에 영향을 주는 인지질 이중층과 수송단백질의 물리적인 특성에 변화를 초래한다는 것을 의미한다.

Keywords

References

  1. Flexas, J., Barbou, M.M., Brendel, O., Cabrera, H.M., Carriqui, M. and A. Diaz-Espejo(2012) Mesophyll diffusion conductance to $CO_2$. Plant Sci. 194:70-84.
  2. Hsiao, T.C., Allaway, W.G. and L.T. Evans(1973) Action spectra for guard cell Rb2+uptake and stomatal opening inVicia faba. Plant Physiol. 51:82-88. https://doi.org/10.1104/pp.51.1.82
  3. Jarvis, P.G. and J.I.L. Morison(1981) The control of transpiration and photosynthesis by the stomata. In: Jarvis, P.G., T.A. Mansfield(eds), Stomatal physiology, Cambridge University Press, England, pp. 247-279.
  4. Kim, C.Y.(2012) Stomatal responses of $C_3$ and $C_4$ cyperus species (Cyperaceae) in Korea to elevated $CO_2$ concentration. M.S.D. Thesis, Sungshin Women's University, Seoul, 357pp.
  5. Kim, D.J., J.S. Lee(2007) Current theories for mechanism of stomatal opening. J. Plant Biol. 50: 523-526. https://doi.org/10.1007/BF03030704
  6. Kinoshita, T., Emi, T., Tominaga, M., Sakamoto, K., Shigenaga, A., Doi, M. and K. Shimazaki(2003) Blue-light and phosphorylation-dependent binding of a 14-3-3 protein to phototropins in stomatal guard cells of broad bean. Plant Physiol. 133: 1453-1463. https://doi.org/10.1104/pp.103.029629
  7. Kuiper, P.J.C.(1964) Dependence upon wavelength of stomatal movement in epidermal tissue of Senecioodoris. Plant Physiol. 39: 952-955. https://doi.org/10.1104/pp.39.6.952
  8. Lee, J.S., D.J.F. Bowling(1992) Effect of the mesophyll on stomatal opening in Commelina communis. J. Exp. Bot. 43: 951-957. https://doi.org/10.1093/jxb/43.7.951
  9. Lee, J.S., D.J.F. Bowling(1993a) The effect of a mesophyll factor on the swelling of guard cell protoplasts of Commelina communis L. J. Plant Physiol. 142: 203-207. https://doi.org/10.1016/S0176-1617(11)80964-8
  10. Lee, J.S., D.J.F. Bowling(1993b) Influence of the mesophyll on the change of electrical potential difference of guard cells induced by red light and $CO_2$ in Commelina communis L. and Tradescantina virginiana L. J. Plant Biol. 36: 383-389.
  11. Lee, J.S., D.J.F. Bowling (1995) Influence of the mesophyll on stomatal opening. Australian J. Plant Physiol. 22: 357-363. https://doi.org/10.1071/PP9950357
  12. Lee, Y., Choi, Y.B., Suh, S., Lee, J.S., Assmann, S.M., Joe, C.O., Kelleher, J.F. and R.C. Crain(1996) Abscisic acid-induced phosphoinositide turn over in guard cell protoplasts of Vicia faba. Plant Physiol. 110: 987-996. https://doi.org/10.1104/pp.110.3.987
  13. Lee, J.S.(2010) Stomatal opening mechanism of CAM plants. J. Plant Biol. 53: 19-23. https://doi.org/10.1007/s12374-010-9097-8
  14. Lee, J.S. (2013) Do really close stomata by soil drying ABA produced in the roots and transported in transpiration stream? American J. Plant Sci. 4: 169-173. https://doi.org/10.4236/ajps.2013.41022
  15. Lin, C.(2000) Plant blue-light receptors. Trends. Plant Sci. 5: 337-342. https://doi.org/10.1016/S1360-1385(00)01687-3
  16. Melis, A. and E. Zeiger(1982) Modulation of guard cell photophsphorylation by $CO_2$. Plant Physiol. 69: 642-647. https://doi.org/10.1104/pp.69.3.642
  17. Morison, J.I.L.and R.M. Gifford(1983) Stomatal sensitivity to carbon dioxide and humidity. Plant Physiol. 71: 789-796. https://doi.org/10.1104/pp.71.4.789
  18. Morison, J.I.L.(1987) Intercellular concentration and stomatal response to $CO_2$. Proceeding of the 1st Symposium on Stomatal function, Stanford, California, pp. 229-251.
  19. Ogawa, T., Ishikawa, K., Shimada, K. and K. Shibata(1978) Synergistic action of red and blue light and action spectra for malate formation in guard cells of Vicia faba L. Planta 142: 61-65. https://doi.org/10.1007/BF00385121
  20. Outlaw, W.(1989) Critical examination of the quantitative evidence for and against $CO_2$ fixation by guard cells. Physiologia Plantarum 77: 275-281. https://doi.org/10.1111/j.1399-3054.1989.tb04981.x
  21. Ramos, C. and A.E. Hall(1982) Relationships between leaf conductance, intercellular $CO_2$ partial pressure and $CO_2$ uptake rate in two $C_3$ and $C_4$ plant species. Photosynthetica 16: 343-355.
  22. Ramos, C. and A.E. Hall(1983) Effects of photofluorescence rate and intercellular partial pressure on leaf conductance and $CO_2$ uptake rate in Capsicum and Amaranthus. Photosynthetica 17: 34-42.
  23. Singh, S.K., Badgujar, G., Reddy, V.R., Fleisher, D.H. and J. A. Bounce(2013) Carbon dioxide diffusion across stomata and mesophyll and photo-biochemical processes as affected by growth $CO_2$ and phosphorus nutrition in cotton. J. Plant Physiol. 170: 801-813. https://doi.org/10.1016/j.jplph.2013.01.001
  24. Singsaas, E.L., Ort, D.R., E. and H. Delucia(2004) Elevated $CO_2$ effects on mesophyll conductance and its consequences for interpreting photosynthetic physiology. Plant Cell Environ. 27: 41-50. https://doi.org/10.1046/j.0016-8025.2003.01123.x
  25. Spanswick, R.M.(1973) Evidence for an electrogenic ion pump in Nitella translucence. Biochim. Biophysics acta 289: 387-398.
  26. Zeiger E.(1983) The biology of stomatal guard cells. Ann. Rev. Plant Physiol. 34: 441-475. https://doi.org/10.1146/annurev.pp.34.060183.002301
  27. Zeiger, E. and L. Taiz(2010) Plant physiology(5nd ed.). Sinauer Associates Inc., Sunderland, 881pp.