DOI QR코드

DOI QR Code

Nematicidal Activity of Streptomyces flavogriseus KRA15-528 to Meloidogyne incognita

Meloidogyne incognita에 대한 Streptomyces flavogriseus KRA15-528의 살선충활성

  • Oh, Mira (Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology) ;
  • Han, Jae Woo (Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology) ;
  • Choi, Jung Sup (Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology) ;
  • Choi, Yong Ho (Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology) ;
  • Jang, Kyoung Soo (Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology) ;
  • Choi, Gyung Ja (Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology) ;
  • Kim, Hun (Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology)
  • 오미라 (한국화학연구원 친환경신물질연구센터) ;
  • 한재우 (한국화학연구원 친환경신물질연구센터) ;
  • 최정섭 (한국화학연구원 친환경신물질연구센터) ;
  • 최용호 (한국화학연구원 친환경신물질연구센터) ;
  • 장경수 (한국화학연구원 친환경신물질연구센터) ;
  • 최경자 (한국화학연구원 친환경신물질연구센터) ;
  • 김헌 (한국화학연구원 친환경신물질연구센터)
  • Received : 2016.06.22
  • Accepted : 2016.08.30
  • Published : 2016.12.31

Abstract

Plant disease caused by root-knot nematode is a major problem in crop production. Using of chemical pesticides, one of the most efficient methods to control nematodes, have raised issues in toxicity to humans and animals and environmental pollution. In this study, to select actinomycete strains that have potential to serve as a microbial agent for control of nematodes, we investigated nematicidal activity of culture broth from 670 Streptomyces isolates. A culture filtrate of KRA15-528 isolate that was identified as S. flavogriseus on the basis of 16S rRNA sequence analysis, showed strong nematicidal activity against second stage of juveniles of Meloidogyne incognita and inhibited egg hatching; exposure to 10% of culture filtrate resulted in 71% juvenile mortality at 48 hours afters treatment and suppressed egg hatching by 54% at 9 days after treatment. When the KRA15-528 culture filtrate was partitioned with ethyl acetate and butanol, ethyl acetate layer exclusively showed strong activity; 91%, 53%, 30% of mortality at 1,000, 500, $250{\mu}g/ml$, respectively. Additionally, the culture filtrate suppressed gall formation on cucumber plant by M. incognita with no phytotoxicity. These results suggest that S. flavogriseus KRA15-528 has potential to serve as a microbial nematicide for the control of root-knot nematode disease.

뿌리혹선충에 의한 병 발생은 작물수확량의 감소를 초래하여 중요한 문제로 인식되고 있다. 화학농약의 사용은 선충방제를 위해 효과적인 방법 중의 하나로 고려되지만 환경 오염이나 인축에 대한 독성과 같은 문제를 야기하고 있다. 본 연구에서는 친환경 살선충제 개발에 사용될 수 있는 미생물을 선발하고자, 토양으로부터 분리한 670여 개의 방선균을 대상으로 뿌리혹선충에 대한 살선충 활성을 조사하였다. 이들 중 가장 우수한 살선충 활성을 나타내는 KRA15-528 균주를 선발하였으며, 16S rRNA 유전자 염기서열에 기초하여 S. flavogriseus로 동정하였다. S. flavogriseus KRA15-28 균주 배양여액을 최종농도 10%가 되도록 J2 단계의 유충과 선충알에 각각 처리 시, 48시간 후 71%의 선충 치사율과 9일째에 54%의 선충 알 부화 억제율을 확인하였다. 배양여액을 에틸아세테이트, 부탄올을 이용하여 용매 분획하여 에틸 아세테이트와 부탄올, 물 추출물에 대한 살선충 활성을 조사한 결과, 에틸 아세테이트 추출물로부터만 높은 살선충 활성을 확인하였다. 1,000, 500, $250{\mu}g/ml$의 농도에서 각각 91%, 53%, 30%의 치사율을 나타내었다. 이외에도, 오이에 대한 뿌리 혹 선충병 방제활성을 조사한 결과, 배양여액 처리구에서 눈에 띄게 뿌리혹형성이 억제되는 현상을 관찰하였다. 따라서, S. flavogriseus KRA15-528은 뿌리혹선충병을 방제에 사용할 수 있는 미생물제제로서의 가능성이 있음을 확인할 수 있었다.

Keywords

References

  1. Abbott, W. S. 1925. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18: 265-267.
  2. Akhtar, M. and Malik, A. 2000. Roles of organic soil amendments and soil organisms in the biological control of plant-parasitic nematodes: a review. Bioresour. Technol. 74: 35-47. https://doi.org/10.1016/S0960-8524(99)00154-6
  3. Barker, K. R., Schmitt, D. P. and Imbriani, J. L. 1985. Nematode population dynamics with emphasis on determining damage potential to crops. In: An Advanced Treatise on Meloidogyne, Volume II: Methodology, eds. by K. R. Barker, C. C. Carter and J. N. Sasser, pp. 135-148. North Carolina State University, Raleigh, NC, USA.
  4. Berdy, J. 2005. Bioactive microbial metabolites. J. Antibiot. 58: 1-26. https://doi.org/10.1038/ja.2005.1
  5. Burg, R. W., Miller, B. M., Baker, E. E., Birnbaum, J., Currie, S. A., Hartman, R., Kong, Y. L., Monaghan, R. L., Olson, G., Putter, I., Tunac, J. B., Wallick, H., Stapley, E. O., Oiwa, R. and Omura, S. 1979. Avermectins, new family of potent anthelmintic agents: producing organism and fermentation. Antimicrob. Agents Chemother. 15: 361-367. https://doi.org/10.1128/AAC.15.3.361
  6. Caillaud, M. C., Dubreuil, G., Quentin, M., Perfus-Barbeoch, L., Lecomte, P., de Almeida Engler, J., Abad, P., Rosso, M. N. and Favery, B. 2008. Root-knot nematodes manipulate plant cell functions during a compatible interaction. J. Plant Physiol. 165: 104-113. https://doi.org/10.1016/j.jplph.2007.05.007
  7. Dezfully, N. K. and Ramanayaka, J. G. 2015. Isolation, identification and evaluation of antimicrobial activity of Streptomyces flavogriseus, strain ACTK2 from soil sample of Kodagu, Karnataka State (India). Jundishapur J. Microbiol. 8: e15107.
  8. Ghorbel, S., Kammoun, M., Soltana, H., Nasri, M. and Hmidet, N. 2014. Streptomyces flavogriseus HS1: isolation and characterization of extracellular proteases and their compatibility with laundry detergents. BioMed Res. Int. 2014: 345980.
  9. Hesseltine, C. W., Benedict, R. G. and Pridham, T. G. 1954. Useful criteria for species differentiation in the genus Streptomyces. Ann. N. Y. Acad. Sci. 60: 136-151. https://doi.org/10.1111/j.1749-6632.1954.tb40003.x
  10. Hwang, S. M., Park, M. S., Kim, J. C., Jang, K. S., Choi, Y. H. and Choi, G. J. 2014. Occurrence of Meloidogyne incognita infecting resistant cultivars and development of an efficient screening method for resistant tomato to the Mi-virulent nematode. Korean J. Hortic. Sci. Technol. 32: 217-226. (In Korean) https://doi.org/10.7235/hort.2014.13129
  11. Jang, J. Y., Choi, Y. H., Joo, Y. J., Kim, H., Choi, G. J., Jang, K. S., Kim, C. J., Cha, B., Park, H. W. and Kim, J. C. 2015. Characterization of Streptomyces netropsis showing a nematicidal activity against Meloidogyne incognita. Res. Plant Dis. 21: 50-57. (In Korean) https://doi.org/10.5423/RPD.2015.21.2.050
  12. Jang, J. Y., Choi, Y. H., Shin, T. S., Kim, T. H., Shin, K. S., Park, H. W., Kim, Y. H., Kim, H., Choi, G. J., Jang, K. S., Cha, B., Kim, I. S., Myung, E. J. and Kim, J. C. 2016. Biological control of Meloidogyne incognita by Aspergillus niger F22 producing oxalic acid. PLoS One 11: e0156230. https://doi.org/10.1371/journal.pone.0156230
  13. Kerry, B. R. 2000. Rhizosphere interactions and the exploitation of microbial agents for the biological control of plant-parasitic nematodes. Annu. Rev. Phytopathol. 38: 423-441. https://doi.org/10.1146/annurev.phyto.38.1.423
  14. Kim, K. H., Joe, Y. A., Choi, S. R. and Goo, Y. M. 1989. Comparative studies on streptomycin producing strains and media. Korean J. Biotechnol. Bioeng. 4: 162-166.
  15. Kim, S. J., Yu, Y. M. and Whang, K. S. 2014. Molecular identification of Meloidogyne spp. in soils from fruit and vegetable greenhouses in Korea. Korean J. Appl. Entomol. 53: 85-91. https://doi.org/10.5656/KSAE.2013.09.0.052
  16. Kim, S. S., Kang, S. I., Kim, J. S., Lee, Y. S., Hong, S. H., Naing, K. W. and Kim, K. Y. 2011. Biological control of root-knot nematode by Streptomyces sampsonii KK1024. Korean J. Soil Sci. Fertil. 44: 1150-1157. https://doi.org/10.7745/KJSSF.2011.44.6.1150
  17. Lacey, E., Gill, J. H., Power, M. L., Rickards, R. W., O'Shea, M. G. and Rothschild, J. M. 1995. Bafilolides, potent inhibitors of the motility and development of the free-living stages of parasitic nematodes. Int. J. Parasitol. 25: 349-357. https://doi.org/10.1016/0020-7519(94)00082-Y
  18. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valetin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J. and Higgins, D. G. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948. https://doi.org/10.1093/bioinformatics/btm404
  19. Lasota, J. A. and Dybas, R. A. 1991. Avermectins, a novel class of compounds: implications for use in arthropod pest control. Annu. Rev. Entomol. 36: 91-117. https://doi.org/10.1146/annurev.en.36.010191.000515
  20. McCart, J. P. 2009. Molecular approaches toward resistance to plant-parasitic nematdoes. In: Cell Biology of Plant Nematode Parasitism, eds. by R. H. Berg and C. G. Tayor, pp. 239-267. Springer, St. Louis, MO, USA.
  21. Nonaka, K., Tsukiyama, T., Okamoto, Y., Sato, K., Kumasaka, C., Yammoto, T., Maruyama, F. and Yoshikawa, H. 2000. New milbemycins from Streptomyces hygroscopicus subsp. aureolacrimosus: fermantation, isolation and strucutre elucidation. J. Antibiot. 53: 694-704. https://doi.org/10.7164/antibiotics.53.694
  22. Oka, Y., Koltai, H., Bar-Eyal, M., Mor, M., Sharon, E., Chet, I. and Spiegel, Y. 2000. New strategies for the control of plant-parasitic nematodes. Pest Manag. Sci. 56: 983-988. https://doi.org/10.1002/1526-4998(200011)56:11<983::AID-PS233>3.0.CO;2-X
  23. Park, M. H., Kim, J. K., Choi, W. H. and Yoon, M. H. 2011. Nematicidal effect of root-knot nematode (Meloidogyne incognita) by biological nematicide. Korean J. Soil Sci. Fertil. 44: 228-235. https://doi.org/10.7745/KJSSF.2011.44.2.228
  24. Park, M. H., Walpola, B. C., Kim, S. J. and Yoon, M. H. 2012. Control effect of root-knot nematode (Meloidogyne incognita) by biological nematicide. Korean J. Soil Sci. Fertil. 45: 162-168. https://doi.org/10.7745/KJSSF.2012.45.2.162
  25. Perry, R. N. and Moens, M. 2006. Plant Nematology. 2nd ed. CABI, Boston, MA, USA. 74 pp.
  26. Putter, I., Mac Connell, J. G., Preiser, F. A., Haidri, A. A., Ristich, S. S. and Dybas, R. A. 1981. Avermectins: novel insecticides, acaricides and nematicides from a soil microorganism. Experientia 37: 963-964. https://doi.org/10.1007/BF01971780
  27. Roberts, T. R. and Hutson, D. H. 1999. Metabolic Pathways of Agrochemicals, Part 2: Insecticides and Fungicides. Royal Society of Chemistry, Cambridge, UK. pp. 741-743.
  28. Rodriguez-Kabana, R., Morgan-Jones, G. and Chet, I. 1987. Biological control of nematodes: soil amendments and microbial antagonists. Plant Soil 100: 237-247. https://doi.org/10.1007/BF02370944
  29. Ruanpanun, P., Laatsch, H., Tangchitsomkid, N. and Lumyong, S. 2011. Nematicidal activity of fervenulin isolated from a nematicidal actinomycete, Streptomyces sp. CMU-MH021, on Meloidogyne incognita. World J. Microbiol. Biotechnol. 27: 1373-1380. https://doi.org/10.1007/s11274-010-0588-z
  30. Sahebani, N. and Hadavi, N. 2008. Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Soil Biol. Biochem. 40: 2016-2020. https://doi.org/10.1016/j.soilbio.2008.03.011
  31. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
  32. Sharon, E., Bar-Eyal, M., Chet, I., Herrera-Estrella, A., Kleifeld, O. and Spiegel, Y. 2001. Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Phytopathology 91: 687-693. https://doi.org/10.1094/PHYTO.2001.91.7.687
  33. Siddiqui, I. A. and Shaukat, S. S. 2003. Suppression of root-knot disease by Pseudomonas fluorescens CHA0 in tomato: importance of bacterial secondary metabolite, 2, 4-diacetylpholoroglucinol. Soil Biol. Biochem. 35: 1615-1623. https://doi.org/10.1016/j.soilbio.2003.08.006
  34. Siddiqui, Z. A. and Mahmood, I. 1999. Role of bacteria in the management of plant parasitic nematodes: a review. Bioresour. Technol. 69: 167-179. https://doi.org/10.1016/S0960-8524(98)00122-9
  35. Southey, J. F. 1986. Laboratory Methods for Work with Plant and Soil Nematodes. Ministry of Agriculture Fisheries and Food, Her Majesty's Stationary Office, London, UK. 202 pp.
  36. Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729. https://doi.org/10.1093/molbev/mst197
  37. Taylor, A. L. and Sasser, J. N. 1978. Biology, Identification and Control of Root-Knot Nematodes (Meloidogyne species). Department Plant Pathology North Carolina State University and United States Agency for International Development, Raleigh, NC, USA. 111 pp.
  38. Tripathi, G. and Rawal, S. K. 1998. Simple and efficient protocol for isolation of high molecular weight DNA from Streptomyces aureofaciens. Biotechnol. Tech. 12: 629-631. https://doi.org/10.1023/A:1008836214495
  39. Trudgill, D. L. and Blok, V. C. 2001. Apomictic, polyphagous rootknot nematodes: exceptionally successful and damaging biotrophic root pathogens. Annu. Rev. Phytopathol. 39: 53-77. https://doi.org/10.1146/annurev.phyto.39.1.53
  40. Watve, M. G., Tickoo, R., Jog, M. M. and Bhole, B. D. 2001. How many antibiotics are produced by the genus Streptomyces? Arch. Microbiol. 176: 386-390. https://doi.org/10.1007/s002030100345
  41. Williams, S. T. and Davies, F. L. 1967. Use of a scanning electron microscope for the examination of actinomycetes. J. Gen. Microbiol. 48: 171-177. https://doi.org/10.1099/00221287-48-2-171
  42. Williamson, V. M. and Hussey, R. S. 1996. Nematode pathogenesis and resistance in plants. Plant Cell 8: 1735-1745. https://doi.org/10.1105/tpc.8.10.1735
  43. Zeng, Q., Huang, H., Zhu, J., Fang, Z., Sun, Q. and Bao, S. 2013. A new nematicidal compound produced by Streptomyces albogriseolus HA10002. Antonie Van Leeuwenhoek 103: 1107-1111. https://doi.org/10.1007/s10482-013-9890-8
  44. Zhao, Z. H., Li, J. Y., Yang, X. Y. and Chu, Y. W. 2003. SIIA-C2191-A and B, novel polycyclic xanthone antibiotics produced by Streptomyces flavogriseus I. Taxonomy, fermentation, isolation and biological activities. Chin. J. Antibiot. 28: 627-632.