DOI QR코드

DOI QR Code

Effect of additives on the hydrothermal synthesis of manganese ferrite nanoparticles

  • Kurtinaitiene, Marija (State Research Institute Centre for Physical Sciences and Technology) ;
  • Mazeika, Kestutis (State Research Institute Centre for Physical Sciences and Technology) ;
  • Ramanavicius, Simonas (State Research Institute Centre for Physical Sciences and Technology) ;
  • Pakstas, Vidas (State Research Institute Centre for Physical Sciences and Technology) ;
  • Jagminas, Arunas (State Research Institute Centre for Physical Sciences and Technology)
  • Received : 2015.06.12
  • Accepted : 2016.01.15
  • Published : 2016.03.25

Abstract

Superparamagnetic iron oxide nanoparticles (Nps), composed of magnetite, $Fe_3O_4$, or maghemite, ${\gamma}-Fe_2O_3$, core and biocompatible polymer shell, such as dextran or chitozan, have recently found wide applications in magnetic resonance imaging, contrast enhancement and hyperthermia therapy. For different diagnostic and therapeutic applications, current attempt is focusing on the synthesis and biomedical applications of various ferrite Nps, such as $CoFe_2O_4$ and $MnFe_2O_4$, differing from iron oxide Nps in charge, surface chemistry and magnetic properties. This study is focused on the synthesis of manganese ferrite, $MnFe_2O_4$, Nps by most commonly used chemical way pursuing better control of their size, purity and magnetic properties. Co-precipitation syntheses were performed using aqueous alkaline solutions of Mn(II) and Fe(III) salts and NaOH within a wide pH range using various hydrothermal treatment regimes. Different additives, such as citric acid, cysteine, glicine, polyetylene glycol, triethanolamine, chitosan, etc., were tested on purpose to obtain good yield of pure phase and monodispersed Nps with average size of ${\leq}20nm$. Transmission electron microscopy (TEM), X-ray diffraction, energy dispersive X-ray spectroscopy (EDX), $M\ddot{o}ssbauer$ spectroscopy down to cryogenic temperatures, magnetic measurements and inductively coupled plasma mass spectrometry were employed in this study.

Keywords

References

  1. Ahn, T., Kim, J.H., Yang, H.M., Lee, J.W. and Kim, J.D. (2012), "Formation pathways of magnetite nanoparticles by coprecipitation method", J. Phys. Chem. C, 116, 6069-6076. https://doi.org/10.1021/jp211843g
  2. Banerjee, S.S. and Chen, D.H. (2008), "Multifunctional pH-sensitive magnetic nanoparticles for simultaneous imaging, sensing and targeted intracellular anticancer drug delivery", Nanotechnology, 19, 505104. https://doi.org/10.1088/0957-4484/19/50/505104
  3. Bao, N., Shen, L., An, W., Padhan, P., Turner, C. and Gupta, A. (2009), "Formation mechanism and shape control of monodisperse magnetic $CoFe_2O_4$ nanocrystals", Chem. Mater., 21(14), 3458-3468. https://doi.org/10.1021/cm901033m
  4. Brabers, V.A.M. (1995), Progress in spinel ferrite research, Handbook of Magnetic Materials, Ed. Buschow, K.H.J., Vol. 8, Chapter 3, Elsevier, NY, USA.
  5. Byrappa, K., Ohara, S. and Adschiri, T. (2008), "Nanoparticles synthesis using supercritical fluid technology-towards biomedical applications", Adv. Drug, Delivery Rev., 126, 273-279.
  6. Coker, V.S., Telling, N.D., van der Laan, G., Pattrick, R.A.D., Pearce, C.I., Arenholz, E., Tuna, F., Winpenny, R.E.P. and Lloyd, J.R. (2009), "Harnessing the extracellular bacterial production of nanoscale cobalt ferrite with exploitable magnetic properties", ACS Nano, 3(7), 1922-1928. https://doi.org/10.1021/nn900293d
  7. Corchero, J. and Villaverde, A. (2009), "Biomedical applications of distally controlled magnetic nanoparticles", Trend. Biotechnol., 27(8), 468-476. https://doi.org/10.1016/j.tibtech.2009.04.003
  8. Guinier, A., Lorrain, P. and Lorrain, D.S.M. (1963), X-Ray Diffraction : In Crystals, Imperfect Crystals and Amorphous Bodies, Freeman, W.H. & Co., San Francisco, CA, USA.
  9. Gupta, A.K. and Gupta, M. (2005), "Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications", Biomater., 26, 3995-4021. https://doi.org/10.1016/j.biomaterials.2004.10.012
  10. Hu, Y., Xie, W., Tang, Y.W. and Wan, C.H. (2007), "Effect of PEG conformation and particle size on the cellular uptake efficiency of nanoparticles with the HepG2 cells", J. Controll. Relase., 118, 7-17. https://doi.org/10.1016/j.jconrel.2006.11.028
  11. Hubert-Pfalzgraf, L.G. (1998), "Some aspects of homo and heterometallic alkoxides based on functional alcohols", Coordinat. Chem. Rev., 178-180, 967-997. https://doi.org/10.1016/S0010-8545(98)00080-0
  12. Janghorban, K. and Shokrollahi, H. (2007), "Influence of $V_2O_5$ addition on the grain growth and magnetic properties of Mn-Zn high permeability ferrites", J. Magn. Magn. Mater., 308, 238-242. https://doi.org/10.1016/j.jmmm.2006.05.023
  13. Jiang, J.Z., Wynn, S., Morup, S., Okada, T. and Berry, F.J. (1999), "Magnetic structure evolution in mechanically milled nanostructured $ZnFe_2O_4$ particles", Nanostruct. Mater., 12, 737-74. https://doi.org/10.1016/S0965-9773(99)00228-7
  14. Jones, D.H. and Srivastava, K.K.P. (1986), "Many-state relaxation model for the Mossbauer spectra of superparamagnets", Phys. Rev. B, 34, 7542-7548. https://doi.org/10.1103/PhysRevB.34.7542
  15. Kumar, C.S.S.R. and Mohammad, F. (2011), "Magnetic nanoparticles for hyperthermia-based therapy and controlled drug delivery", Adv. Drug. Delivery Rev., 6 3, 789-808. https://doi.org/10.1016/j.addr.2011.03.008
  16. Latrigue, L., Wilhelm, C., Servais, J., Factor, R., Dencousse, A., Bacri, J.C., Luciani, N. and Gazeau, F. (2012), "Nanomagnetic Sensing of Blood Plasma Protein Interactions with Iron Oxide Nanoparticles: Impact on Macrophage Uptake", ACS Nano., 6, 2665-2678. https://doi.org/10.1021/nn300060u
  17. Laokul, P., Amornkitbamrung, V., Seraphin, S. and Maensiri, S. (2011), "Characterization of magnetic properties of nanocrystalline $CuFe_2O_4$, $NiFe_2O_4$, $ZnFe_2O_4$ powders prepared by the Aloe vera extract solution", Curr.Appl. Phys., 11(1), 101-108. https://doi.org/10.1016/j.cap.2010.06.027
  18. Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Elst, L.V. and Muller, R.N. (2008), "Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications", Chem. Rev., 108, 2064-2110. https://doi.org/10.1021/cr068445e
  19. Lee, D.K., Kim, Y.H., Kang, Y.S. and Stroeve, P. (2005), "Preparation of a Vast $CoFe_2O_4$ Magnetic Monolayer by Langmuir-Blodgett Technique", J. Phys. Chem. B, 109(31), 14939-14944. https://doi.org/10.1021/jp052363x
  20. Liu, B.H., Ding, J., Dong, Z.L., Boothroyd, C.B., Yin, J.H. and Yi, J.B. (2006), "Microstructural evolution and its influence on the magnetic properties of $CoFe_2O_4$ powders during mechanical milling", Phys. Rev. B, 74, 184427. https://doi.org/10.1103/PhysRevB.74.184427
  21. Liu, Y., Zhang, Y., Feng, J.D., Li, C.F., Shi, J. and Xiong, R. (2009), "Dependence of magnetic properties on crystallite size of $CoFe_2O_4$ nanoparticles synthesised by auto-combustion method", J. Exp. Nanosci., 4, 159-168. https://doi.org/10.1080/17458080902929895
  22. Lu, A.H., Salabas, E.L. and Schuth, F. (2007), "Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application", Angew. Chem. Int. Ed., 46, 1222-1244. https://doi.org/10.1002/anie.200602866
  23. Mahmoudi, M., Sant, S., Wang, B., Laurent, S. and Sen, T. (2011), "Superparamagnetic iron oxide nanoparticles (SPION's): Development, surface modification and application in chemotherapy", Adv. Drug Delivery Rev., 63, 24-46. https://doi.org/10.1016/j.addr.2010.05.006
  24. Naseri, M.G., Saion, E.B. and Kamali, A. (2012), "An overview on nanocrystalline $ZnFe_2O_4$, $MnFe_2O_4$, and $CoFe_2O_4$ synthesized by a thermal treatment method", ISRN Nanotechnol., ID 604241, doi:10.5402/2012/604241.
  25. Peddis, D., Cannas, C., Musinu, A. and Piccaluga, G. (2008), "Coexistence of superparmagnetism and spinglass like magnetic ordering phenomena in a Co$Fe_2O_4-SiO_2$ nanocomposite", J. Phys. Chem. C, 112(13), 5141-5147. https://doi.org/10.1021/jp076704d
  26. Pereira, C., Pereira, A.M., Fernandes, C., Araujo, J.A., Freire, C. et al (2012), "Superparamagnetic Me$Fe_2O_4$ (M=Fe, Co, Mn) nanoparticles: tuning the particle size and magnetic properties through a novel one-step coprecipitation route", Chem. Mater., 24, 1496-1504. https://doi.org/10.1021/cm300301c
  27. Pramanik, N.C., Fujii, T., Nakanishi, M. and Takada, J. (2004), "Effect of $Co^{2+}$ ion on the magnetic properties of sol-gel cobalt ferrite thin films", J. Mater. Chem., 14, 3328-3332. https://doi.org/10.1039/B410163D
  28. Pratsinis, S.E. and Vemury, S. (1996), "Particle formation in gases-a review", Powder Technol., 88, 267-272. https://doi.org/10.1016/S0032-5910(96)03130-0
  29. Salazar, J.S., Perez, L., de Abril, O., Phuoc, L.T., Ihiawakrim, D., Vazgues, M., Greneche, J.M., Begin-Colin, S. and Pourroy, G. (2011), "Magnetic Iron Oxide Nanoparticles in 10-40 nm Range: Composition in terms of magnetite/maghemite ratio and effect on the magnetic properties", Chem. Mater. B, 23, 1379-1386. https://doi.org/10.1021/cm103188a
  30. Shokrollahi, H. (2008), "Magnetic properties and densification of manganese-zinc soft ferrites ($Mn_{1-x}Zn_xFe_2O_4$) doped with low melting point oxides", J. Magn. Magn. Mater., 320, 463-474. https://doi.org/10.1016/j.jmmm.2007.07.003
  31. Solano, E., Perez-Mirabet, L., Martinez-Julian, F., Guzman, R., Arbiol, J. et al. (2012), "Facile and efficient one-pot solvothermal and microwave-assisted synthesis of stable colloidal solutions of $MFe_2O_4$ spinel magnetic nanoparticles", J. Nanopart. Res., 14, 1034-1038. https://doi.org/10.1007/s11051-012-1034-y
  32. Sun, S., Zeng, H., Robinson, D.B., Raoux, S., Rice, P.M., Wang, S.X. and Li, G. (2004), "Monodisperse $MFe_2O_4$ (M=Fe, Co, Mn) nanoparticles", J. Am. Chem. Soc., 126(1), 273-279. https://doi.org/10.1021/ja0380852
  33. Thomas, M.F. and Johnson, C.E. (1986), "Mossbauer spectroscopy", Dickson D.P.E. and Berry F.J. Cambridge University Press, Cambridge.
  34. Tourinho, F.A., Franck, R. and Massart, R. (1990), "Aqueous ferro fluids based on manganese and cobalt ferrites", J. Mater. Sci., 25, 3249-3254. https://doi.org/10.1007/BF00587682
  35. Yang, H., Zhang, C., Shi, X., Hu, H., Du, X., Fang, Y., Ma, Y., Wu, H. and Yang, S. (2010), "Watersoluble super paramagnetic manganese ferrite nanoparticles for magnetic resonance imaging", Biomater., 31, 3667-3673. https://doi.org/10.1016/j.biomaterials.2010.01.055
  36. Zeng, H., RiCe, P.M., Wang, S.X. and Sun, S. (2004), "Monodisperse $MFe_2O_4$ (M=Fe,Co,Mn) nanoparticles", J. Am. Chem. Soc., 126, 11458-11459. https://doi.org/10.1021/ja045911d
  37. Zheng, L., He, K., Xu, C.Y. and Shao, W.Z. (2008), "Synthesis and characterization of single crystalline $MnFe_2O_4$ nanorods via a surfactant-free hydrothermal route", J. Magn. Magn. Mater., 320(21), 2672-2675. https://doi.org/10.1016/j.jmmm.2008.05.034

Cited by

  1. Investigating the stable operating voltage for the MnFe2O4 Li-ion battery anode vol.5, pp.6, 2016, https://doi.org/10.1039/d1se00044f
  2. Stable and Efficient Photoinduced Charge Transfer of MnFe2O4/Polyaniline Photoelectrode in Highly Acidic Solution vol.6, pp.1, 2016, https://doi.org/10.3390/colloids6010001