DOI QR코드

DOI QR Code

Hydrochemistry and Occurrences of Natural Radioactive Materials from Groundwater in Various Geological Environment

다양한 지질환경에서 지하수의 수리화학 및 자연방사성물질 산출특성

  • Jeong, Chan Ho (Department of Construction Safety and Disaster Prevention Engineering, Daejeon University) ;
  • Lee, Yu Jin (Department of Construction Safety and Disaster Prevention Engineering, Daejeon University) ;
  • Lee, Yong Cheon (Department of Construction Safety and Disaster Prevention Engineering, Daejeon University) ;
  • Kim, Moon Su (Soil and Groundwater Research Division, National Institute of Environmental Research) ;
  • Kim, Hyun Koo (Soil and Groundwater Research Division, National Institute of Environmental Research) ;
  • Kim, Tae Seong (Soil and Groundwater Research Division, National Institute of Environmental Research) ;
  • Jo, Byung Uk (Korea Institute of Geoscience and Mineral Resources) ;
  • Choi, Hyeon Young (Department of Construction Safety and Disaster Prevention Engineering, Daejeon University)
  • 정찬호 (대전대학교 건설안전방재공학과) ;
  • 이유진 (대전대학교 건설안전방재공학과) ;
  • 이용천 (대전대학교 건설안전방재공학과) ;
  • 김문수 (국립환경과학원 토양지하수연구과) ;
  • 김현구 (국립환경과학원 토양지하수연구과) ;
  • 김태승 (국립환경과학원 토양지하수연구과) ;
  • 조병욱 (한국지질자원연구원) ;
  • 최현영 (대전대학교 건설안전방재공학과)
  • Received : 2016.12.02
  • Accepted : 2016.12.27
  • Published : 2016.12.30

Abstract

The purpose of this study is to analyze the relationship of hydrochemistry, geology, fault with occurrence of uranium and radon-222 from the groundwater in the Yeongdong area. In this study, 49 groundwater and 4 surface water samples collected in the study area were collected on two separate occasions. The surface radioactivities were measured at 40 points to know the relationship between the occurrence of uranium in groundwater and surface geology. The chemical composition of groundwater showed three types : $Ca-HCO_3$, $Na-HCO_3$ and $Ca-HCO_3(SO_4,\;NO_3)$. Two groundwater of 49 samples exceeded the maximum contaminant levels of uranium, $30{\mu}g/L$, proposed by the Ministry of Environment of Korea and 11 groundwater of 40 samples for Rn-222 concentrations exceeded the 148 Bq/L maximum contaminant level of US EPA. Most of unsuitable groundwater are located in the geological boundary related with the biotite gneiss and the surface radioactivities of rock samples showed no relationship with groundwater geochemical constituents. The strike-slip fault, Youngdong fault, is $N45^{\circ}E$ direction and the high concentrations of uranium in upper part of fault, consisted of granite and granitic gneiss are detected but in lower part, consisted of metamorphic sedimentary rock are not detected. It suggests that the natural radioactive concentrations are related with the geologic characteristics and the migration and diffusion of natural radioactive materials are affected by the fault.

화강암, 화강편마암, 변성퇴적암류와 같이 다양한 지질환경에서 지하수내 자연방사성물질인 우라늄과 Rn-222의 산출특성에 대한 지하수의 수리화학적 영향, 지질과의 상관성, 단층대의 영향 등에 대해서 알아보고자 하였다. 이 연구를 위하여 영동지역을 대상으로 2차례에 걸쳐 지하수 49점, 지표수 4점을 채취하였다. 지하수내 우라늄과 지표 암석과의 상관성을 알아보기 위해 감마스펙트로메트리를 이용하여 40지점에서 지표방사능을 측정하였다. 지하수 화학적 유형 $Ca-HCO_3$, $Na-HCO_3$, $Ca-HCO_3(SO_4+NO_3)$등 3가지 유형을 보인다. 환경부 권고치인 우라늄 $30{\mu}g/L$를 초과하는 지하수는 총 49지점 중 2점이며, Rn-222의 경우 미국 EPA 기준치인 148 Bq/L를 초과하는 지하수는 총 40지점중 11점이다. 초과하는 지하수는 주로 화강편마암과 흑운모편마암 지질과 지질경계부에 분포한다. 지표방사능 세기와 지하수내 우라늄함량과는 뚜렷한 상관관계를 보여지 않는다. 아울러 $N45^{\circ}E$ 방향의 주향이동단층인 영동단층은 $82^{\circ}$의 고경도로 상반에 해당되는 화강암 및 화강편마암지역에서 고함량의 우라늄과 Rn-222가 산출되며, 하반에 해당되는 퇴적암지역에는 고함량의 지하수가 확인되지 않는데, 이와 같은 뚜렷한 차이는 지질의 영향과 더불어 단층대가 방사성물질의 이동 및 확산을 차단시키는 역할에도 원인이 있을 것으로 추정된다.

Keywords

References

  1. Banks, D., Frengstad, B., Midtgard, A. K., Krog, J. R., and Strand, T., 1998, The chemistry of Norwegian groundwater: I. the distribution of radon, major and minor elements in 1604 crystalline bedrock groundwaters. Science of the Total environment, 222(1), 71-91. https://doi.org/10.1016/S0048-9697(98)00291-5
  2. Betcher, R. N., Gascoyne, M., and Brown, D., 1988, Uranium in groundwaters of southeastern Manitoba, Canada. Canadian Journal of Earth Sciences, 25(12), 2089-2103. https://doi.org/10.1139/e88-193
  3. CEPA (California Environmental Protection Agency), 2001, Public health goals for uranium in drinking water. CEPA, California, 30p.
  4. Choo, C. O., 2002, Characteristics of uraniferous minerals in Daebo granite and significance of mineral species, Journal of Mineralogical Society of Korea, 15(1), 11-21 (in Korean with English abstract).
  5. Cho, B. W., Jeong, C, H., and Han, I. S., 2009, A detail study on the occurrence of radioactive materials in groundwater (II), NIER, 273p (in Korean with English abstract).
  6. Cho, B. W., Kim, K. H., Kim, Y. K., Sung, I. H., Ahn., J. S., Yun, U., Yoon, Y. Y., Lee, K. Y., Lee, B. D., Chon, C. M., Cho, S. Y., Chae, G. T., Choi, B. I., Hong, Y. K., Baek, S. G., Ryu, S. W., and Jeong, C. H., 2008, Adetail study on the occurrence of radioactive materials in groundwater (I), NIER, 293p.
  7. Cho, B. W., Kim, K. H., Kim, Y. K., Sung, I. H., Ahn, J. S., Yun, U., Yoon, Y. Y., Lee, K. Y., Lee, B. D., Lee, H. J., Im, H. C., Cho, S. Y., and Hong, K. Y., 2006, A study on the occurrence of radioactive materials in groundwater, NIER, 200p (in Korean with English abstract).
  8. Cothern, C. R., 1990, Radon, radium and uranium in drinking water, CRC Press.
  9. Cowart, J. B. and Osmond, J. K., 1980, Uranium isotopes in Groundwater as a Prospecting Techique. US Dept. Energy Report, GJBX 119, 112p.
  10. EPA, 2012, Report to Congress: Radon in Drinking Water Regulations, EPA 815-R-12-002, 34p.
  11. Finch, R. J. and Murakami, T., 1999, Systematic and paragenesis of uranium minerals. In Uranium: Mineralogy, Geochemistry, and the Environment: Reviews in Mineralogy, 38(1), 91-180.
  12. Gaines, R. V., Skinner, H. C., Foord, E. E., Mason, B., Rosenzweig, A., King, V. T., and Dowty, E., 1997, Dana's new mineralogy, Eighth edition, New York, John Wiley & Sons, 1872p.
  13. Greenberg, A. E., Clesceri, L. S., and Eaton, A. D., 1992, Standard methods for the examination of water and waste water, The American Public Health Association, Washington DC, 4-55.
  14. Han, J. H. and Park, K. H., 1996, Abundances of uranium and radon in groundwater of Taejeon area, the Korean Society of Economic and Environmental Geology, 29(5), 589-595 (in Korean with English abstract).
  15. Jeong, C. H., Kim, C. S., Kim, T. K., and Kim, S. J., 1997, Reaction path modelling on geochemical evolution of groundwater and formation of secondary minerals in watergneiss reaction system, The Journal of Mineralogical Society of Korea, 10(1), 33-44 (in Korean with English abstract).
  16. Jeong, C. H., Kim, D. W., Kim, M. S., Lee, Y. J., Kim, T. S., Han, J. S., and Jo, B. W., 2012, Occurrence of natural radioactive materials in borehole groundwater and rock core in the Icheon area, The Journal of Engineering Geology, 22(1), 95-111 (in Korean with English abstract). https://doi.org/10.9720/kseg.2012.22.1.095
  17. Jeong, C. H., Kim, M. S., Lee, Y. J., Han, J. H., Jang, H. G., and Jo, B. U., 2011, Hydrochemistry and occurrence of natural radioactive materials within borehole groundwater in the Cheonwon area, The Journal of Engineering Geology, 21(2), 163-178 (in Korean with English abstract). https://doi.org/10.9720/kseg.2011.21.2.163
  18. Jeong, C. H., Ryu, K. S., Kim, M. S., Kim, T. S., Han, J. S., and Jo, B. U., 2013, Geochemical occurrence of uranium and radon-222 in groundwater at test borehole site in the Daejeon area, The Journal of Engineering Geology, 23(2), 171- 186 (in Korean with English abstract). https://doi.org/10.9720/kseg.2013.2.171
  19. Jeong, C. H., Yang, J. H., Lee, Y. J., Lee, Y. C., Choi, H. Y., Kim, M. S., Kim, H. K., Kim, T. S., and Jo, B. U., 2015, Occurrences of uranium and radon-222 from groundwaters in various geological environment in the hoengseong area, The Journal of Engineering Geology, 25(4), 557-576 (in Korean with English abstract). https://doi.org/10.9720/kseg.2015.4.557
  20. Jeong, C. H., Yan, J. H., Lee, Y. C., Lee, Y. J., Choi, H. Y., Kim, M. S., Kim, H. K., Kim, T. S., and Jo, B. U., 2016, Occurrence Characteristics of Uranium and Radon-222 in Groundwater at OO Village, Yongin Area, The Journal of Engineering Geology, 26(2), 261-276 (in Korean with English abstract). https://doi.org/10.9720/kseg.2016.2.261
  21. Ju, B. K., Kim, M. S., Jeong, D. H., Hong, J. K., Kim, D. S., Noh, D. J., Yoon, J. K., and Kim, T. S., 2013, Environment characteristics of naturally occurring radioactive materials ($^{238}U$, $^{222}Rn$) concentration in drinking groundwaters of metamorphic rock areas; Korea, Journal of Soil and Groundwater Environment, 18(3), 82-92 (in Korean with English abstract). https://doi.org/10.7857/JSGE.2013.18.3.082
  22. Kim, M, S., Yang, J, H., Jeong, C. H., Kim, H. K., Kim, D. W., and Jo, B. U., 2014, Geochemical origins and occurrences of natural radioactive materials in borehole groundwater in the Goesan area, The Journal of Engineering Geology, 24(4), 535-550 (in Korean with English abstract). https://doi.org/10.9720/kseg.2014.4.535
  23. KIER(Korea Institute of Energy and Resources Seoul Korea), 1986, Geological report of the Yongdong sheet(scale 1:50,000).
  24. Lanctot, E. M., Tolman, A. L., and Loiselle, M., 1985, Hydrogeochemistry of radon in ground water. The Second Annual Eastem Regional Ground Water Conference, Portland, Maine, July 16-18, 66-85 p.
  25. Langmuir, D., Hall, P., and Drever, J., 1997, Environmental geochemistry, Prentice Hall, New Jersey.
  26. Loomis, L. P., 1997, Radon-222 concentration and aquifer lithology in North Carolina. Ground Water Monitoring Review, 7, 33-39.
  27. Lowry, J. D., Hoxie, D. C., and Moreau, E., 1987, iExtreme levels of 222 Rn and U in a private water supplyi Radon, radium, and other radioactivity in ground water: Hydrogeologic impact and application to indoor airborne contamination, Lewis Publisher, Chelsea, MI.
  28. Mandarino, M. J., 1999, Fleischer's glossary of mineral species, Minerlogical Record Incorporated Tucson, Arizona.
  29. Michel, J., 1990, Relationship of radium and radon with geological formations. In: Cothern, C. R. and Revers, P.A. (eds.), Radon, Radium and Uranium in Drinking Water. Lewis Publishers, Inc., Michigan, 83-96.
  30. NIER (National Institute of Environmental Research), 1999, Study on the radionuclides concentration in groundwater (I).
  31. NIER (National Institute of Environmental Research), 2000, Study on the radionuclides concentration in groundwater (II).
  32. NIER (National Institute of Environmental Research), 2001, Study on the radionuclides concentration in groundwater (III).
  33. NIER (National Institute of Environmental Research), 2002, Study on the radionuclides concentration in groundwater (IV).
  34. Park, M. E. and Kim, G. S., 1998, Geochemical of uranium and thorium deposits from the Kyemyeongsan pegmatite, The Korean Society of Economic and Envrionmental Geology, 31, 365-374 (in Korean with English abstract).
  35. Shin, D. C., Kim, Y. S., Moon, J. Y., Park, H. S., Kim, J. Y., and Park, S. K., 2002, A review on the hazard of radioactive materials in groundwater, Journal of Envrionmental Toxicology Society of Korea, 17, 273-384 (in Korean with English abstract).
  36. Sung, I. H., Cho, B, W., Kim, D. O., Kim, K. H., Park, D. W., Park, J. K., Yoon, Y. Y., Lee, B. J., Lee, B. D., Lee J. C., Im, H. C., Chung, K. S., Cho, S. Y., Hong, Y. K., Jang, W. S., Yang, J. H., Shin, D. C., and Han, I. S., 2002, A study on the occurrence of radioactive materials in groundwater (IV), NIER, 357p (in Korean with English abstract).
  37. Sung, I. H., Cho, B, W., Woo, H. J., Kim, D. O., Kim, K. H., Park, J. K., Hong, Y. K., Lee, B. D., Yun, U., Lee, B. J., Lee, J. C., Yoon, Y. Y., Kim, Y, J., Chung, K. S., Cho, S. Y., Shin, D. C., Chang, T. W., and Yu, M. J., 2001, A study on the occurrence of radioactive materials in groundwater(III), NIER, 388p (in Korean with English abstract).
  38. Sung, I. H., Kim, D. O., Woo, H. J., Cho, B. W., Park, J. K., Lee, H, Y., Chung, K. S., Yoon, Y. Y., Cho, S. Y., Lee, Y. J., Lee, B. D., Kim, T. K., Kim, K. S., Choo, C. O., and Shin, D, C., 1999, A study on the occurrence of radioactive materials in groundwater (I), NIER, 338p (in Korean with English abstract).
  39. Wathen, J. B., 1987, The effect of uranium siting in two-mica granites on uranium concentrations and radon activity in ground water. Radon, radium, and other radoactivity in groundwater, Proceedings of the NWWA conference.

Cited by

  1. 지리정보시스템(GIS)을 이용한 토양지질도 분포와 실내라돈 상관성 연구 : 화천 및 장수의 사례를 근거로 vol.27, pp.4, 2016, https://doi.org/10.15269/jksoeh.2017.27.4.333
  2. 충북 영동군 복합 지질지역에서 산출되는 지하수의 수리지화학적 특성 vol.50, pp.6, 2016, https://doi.org/10.9719/eeg.2017.50.6.445
  3. 밀양지역 도로건설 현장 지반암석내 분포하는 황철석에 의한 산성침출수 발생과 영향 vol.28, pp.3, 2016, https://doi.org/10.9720/kseg.2018.3.501