DOI QR코드

DOI QR Code

A Study on the Analysis of Visibility between a Lunar Orbiter and Ground Stations for Trans-Lunar Trajectory and Mission Orbit

지구-달 전이궤적 및 임무 궤도에서 궤도선과 지상국의 가시성 분석에 관한 연구

  • Received : 2015.09.10
  • Accepted : 2016.02.03
  • Published : 2016.03.01

Abstract

Korean government plans to launch a lunar orbiter and a lander to the Moon by 2020. Before launch these two proves, an experimental lunar orbiter will be launched by 2018 to obtain key space technologies for the lunar exploration. Several payloads equipped in experimental lunar orbiter will monitor the surface of the Moon and will gather science data. Lunar orbiter sends telemetry and receives tele-command from ground using S-band while science data is sent to ground stations using X-band when the visibility is available. Korean deep space network will be mainly used for S and X-band communication with lunar orbiter. Deep Space Network or Universal Space Network can also be used for the S-band during trans-lunar phase when korean deep space network is not available and will be used for the S-band in normal mission orbit as a backup. This paper analyzes a visibility condition based on the combination of various ground antennas and its mask angles according to mission scenario to predict the number of contacts per day and to build an operational scenario for the lunar orbiter.

대한민국 정부는 2020년까지 달에 궤도선과 착륙선 발사를 계획하고 있다. 두 가지 탐사선을 발사하기 이전에 탐사선의 핵심기술 확보 및 달의 과학 데이터를 획득하기 위해 시험용 궤도선을 2018년까지 발사할 계획이다. 궤도선의 탑재체는 달 표면 촬영 및 과학 데이터를 획득한 후 지상으로 전송한다. 또한 궤도선이 지상국과 교신이 가능하면 S-band 대역으로 원격명령 및 원격 측정 데이터를 전송하고, X-band 대역으로 과학 데이터를 전송한다. 한국형 심우주 네트워크는 궤도선과 주로 S 및 X-band 통신을 수행한다. 지구-달 전이 단계에서 한국형 심우주 네트워크가 가용할지 않을 경우 Deep Space Network 또는 Universal Space Network를 이용하며, 임무 궤도에서는 예비로 이 네트워크들이 사용된다. 본 논문은 임무 시나리오에 따른 궤도선의 일별 교신 횟수를 예측하고 운영 시나리오를 작성하기 위해 다양한 안테나 및 마스크 각도에 따른 가시성 조건을 분석하였다.

Keywords

References

  1. K. Uesugi, "Results of the MUSES-A 'HITEN' Mission", Advanced Space Research, Vol. 18, No. 11, 1996, pp. 69-72.
  2. Trevor C Sorensen, Paul D Spudis, "The Clementine mission - A 10-year perspective", J. Earth Syst. Sci. 114, No. 6, December 2005, pp. 645-668. https://doi.org/10.1007/BF02715950
  3. David Lozier, Ken Galal, David Folta, Mark Beckman, "Lunar Prospector Mission Design and Trajectory Support", AAS(American Astronautical Society), 1998.
  4. Yasuhiro Nagae, "The System Concept of SELENE", Acta Astronautica, Vol. 45, 1999, pp. 197-205. https://doi.org/10.1016/S0094-5765(99)00137-X
  5. https://directory.eoportal.org/web/eoportal/satellite-missions/c-missions/chandrayaan-1
  6. Mark Beckman, "Mission Design for the Lunar Reconnaissance Orbiter", 29th Annual AAS Guidance and Control Conference, 2006.
  7. Ralph B. Roncoli, Kenneth K. Jujii, "Mission Design Overview for the Gravity Recovery and Interior Laboratory(GRAIL) Mission", AIAA/AAS Aerodynamics Specialist Conference, 2-5 Aug, 2010.
  8. Michel Loucks, Laura Plice, Daniel Cheke, Cary Maunder, Brian Reich, "Trade Studies in LADEE Trajectory Design", Proceedings of the 25th AAS/AIAA Space Flight Mechanics Meeting, 11-15 Jan, 2015.
  9. Denis Estublier et al. "Electric Propulsion on SMART-1 : Technical milestone", ESA bulletin 129, February 2007 pp. 41-46
  10. Su-Jin Choi, Young-Joo Song, Jonghee Bae, Eunhyeuk Kim, Gyanghyeok Ju, "Design and Analysis of Korean Lunar Orbiter Mission using Direct Transfer Trajectory", J. of The Korean Society for Aeronautical and Space Sciences, Vol. 41, 2013, pp. 921-930. https://doi.org/10.5139/JKSAS.2013.41.11.921
  11. http://deepspace.jpl.nasa.gov/
  12. http://www.sscspace.com/about-the-ssc-group
  13. https://en.wikipedia.org/wiki/Moon
  14. NASA, Lunar Reconnaissance Orbiter Project "Mission Concept of Operation".
  15. P.G. Antreasian, R.S. Bhat and el, "Navigation of the Twin GRAIL Spacecraft into Science Formation at the Moon", 23rd International Symposium on Space Flight Dynamics, 29 Oct-2 Nov, 2012.
  16. Policastri, L. A., Carrico, J. P., and el, "Orbit Determination and Acquisition for LADEE and LLCD Mission Operations", Proceedings of the 25th AAS/AIAA Space Flight Mechanics Meeting, 11-15 Jan., 2015.
  17. https://www.agi.com/