DOI QR코드

DOI QR Code

Effect of spectral drift to coherent optical fiber sensor

가간섭성 광섬유 센서에 대한 주파수 천이도의 영향

  • Choi, Kyoo-Nam (Dept. of Information and Telecommunication Eng., Incheon National University)
  • 최규남 (인천대학교 정보통신공학과)
  • Received : 2016.01.11
  • Accepted : 2016.03.24
  • Published : 2016.03.31

Abstract

Effect of spectral drift in coherent fiber laser was investigated by injecting optical feedback to Fabry-Perot resonance loop. Er+3 doped fiber laser having unilateral optical feedback loop in Fabry-Perot configuration using two FBGs was fabricated. The optical feedback was found to be effective in linewidth reduction of fiber laser compared to the case without any optical feedback. The linewidth of three fiber lasers using above configuration were measured to be within 3kHz which is resolution-limited performance of self-heterodyne linewidth measurement set-up. The frequency drift measurement using Mach-Zehnder measurement set-up having 200m optical delay-line in one arm showed that the frequency drift rate of optical feedback fiber laser was measured as 300kHz/sec which was better than the case without optical feedback.

페브리-페로 공진루프에서 광궤환이 가간섭성 광섬유 레이저의 주파수 천이도에 미치는 영향을 연구하였다. Er+3가 도핑 된 광궤환 방식 광섬유 레이저는 두 개의 광섬유브래그격자로 이루어진 페브리-페로 공진기에서 단방향 광궤환이 이루어지도록 구성하였다. 광궤환은 그렇지 않은 경우와 비교하여 광섬유레이저의 선폭 감소에 효과적인 것으로 나타났다. 위의 구성을 사용한 세 가지 광섬유 레이저는 모두 자기헤테로다인 선폭 측정 장치의 해상도 한계인 3kHz 이내로 나타났다. 마크-젠더 주파수 천이도 측정 장치의 한쪽 선로에 200m 길이의 광지연 선로를 두고 측정한 결과는 광궤환 방식 광섬유 레이저의 주파수 천이도가 광궤환이 없는 광섬유 레이저 보다 우수한 300kHz/sec으로 나타났다.

Keywords

References

  1. K. Choi, "Line Edge Detection Sensor using Visual Spectral Wavelength," J. of the Korea Institute of Electronic Communication Sciences, vol. 7, no. 2, 2012, pp. 303-308. https://doi.org/10.13067/JKIECS.2012.7.2.303
  2. T. Kim, Y. Rhee, and S. Kim, "Implementation of a Microwave Doppler Sensor," J. of the Korea Institute of Electronic Communication Sciences, vol. 4, no. 2, 2009, pp. 75-81.
  3. K. Choi, "Vehicle Collision Avoidance Sensor with Interference Immunity to Own Transmitted Sign," J. of the Korea Institute of Electronic Communication Sciences, vol. 7, no. 2, 2013, pp. 433-438.
  4. C. Leung, C. Huang, and I. Chang, "Optical fiber security system: a field test report," Proc. SPIE, 838, Fiber Optic and Laser Sensors V, Paper 51, San Diego, USA, March 1988, pp. 365-371.
  5. J. Dakin, D. Pearce, A. Ptrong, and C. Aade, "Novel distributed optical fiber sensing system enabling location of disturbances in a Sagnac loop interferometer," Proc. SPIE, 838, Fiber Optic and Laser Sensors V, Paper 18, San Diego, USA, March 1988, pp. 325-328.
  6. N. Park, J. Wawson, and K. Jahala, "Frequency locking of an erbium-doped fiber ring laser to an external fiber Fabry-Perot resonator," Opt. Lett., vol. 18, no.11, 1993, pp. 879-881. https://doi.org/10.1364/OL.18.000879
  7. Y. Cheng, J. Tringlebotn, W. Loh, R. Iaming, and D. Nayne, "Stable single-frequency travelling-wave fiber laser with integral saturable-absorber-based tracking narrow-band filter," Opt. Lett., vol. 20, no.8, 1995, pp. 875-877. https://doi.org/10.1364/OL.20.000875
  8. D. Ihang, M. Guy, S. Vhernikov, J. Raylor, and H. Kong, "Single-frequency erbium fiber laser using the twisted-mode technique," Electron. Lett., vol. 32, no.19, 1996, pp. 1786-1787. https://doi.org/10.1049/el:19961194
  9. G. Bonfrate, F. Vaninetti, and F. Negrisolo, "Single-frequency MOPA Er+3 DBR fiber laser fro WDM digital telecommunication systems," IEEE Photon. Technol. Lett., vol. 10, no.8, 1998, pp. 1109-1111. https://doi.org/10.1109/68.701518
  10. H. An, X. Lin, W. Ju, and H. Diu, "Novel single-frequency erbium-doped fiber loop laser," Microwave Opt. Technol. Lett., vol. 23, no.2, 1999, pp.95-97. https://doi.org/10.1002/(SICI)1098-2760(19991020)23:2<95::AID-MOP10>3.0.CO;2-7
  11. C. Lee, Y. Chen, and S. Liaw, "Single-longitudinal-mode fiber laser with a passive multiple-ring cavity and its application for video transmission," Opt. Lett., vol. 23, no.5, 1998, pp. 358-360. https://doi.org/10.1364/OL.23.000358
  12. R. Paschotta, J. Nilsson, L. Reekie, A. Trooper, and D. Hanna, "Single-frequency ytterbium-doped fiber laser stabilized by spatial hole burning," Opt. Lett., vol. 22, no.1, 1997, pp. 40-42. https://doi.org/10.1364/OL.22.000040
  13. H. Hee, G. Lee, and T. Pewson, "Narrow Linewidth CW and Q-switched erbium-doped fiber loop laser," Electron. Lett., vol. 34, no.13, 1998, pp. 1318-1319. https://doi.org/10.1049/el:19980913
  14. N. Kishi and T. Yazaki, "Frequency control of a single-frequency fiber laser by cooperatively induced spatial-hole burning," IEEE Photon. Technol. Lett., vol. 11, no.2, 1999, pp. 182-184. https://doi.org/10.1109/68.740697
  15. W. Loh, B. Namson, L. Dong, G. Jowle, and K. Hsu, "High performance single frequency fiber grating-based erbium:ytterbium-codoped fiber lasers," J. Lightwave Tech., vol. 16, no.1, 1998, pp. 114-118. https://doi.org/10.1109/50.654992
  16. R. Fuerker, J. Munch, and L. Heflinger, "Coherence length measured directly from holography," Appl. Opt., vol. 28, no.5, 1989, pp. 1015-1017. https://doi.org/10.1364/AO.28.001015