DOI QR코드

DOI QR Code

Ion conducting properties of imidazolium salts with tri-alkyl chains in organic electrolytes against activated carbon electrodes

  • Kim, Kyungmin (School of Chemical and Biochemical Engineering, Pusan National University) ;
  • Park, Soo-Jin (Department of Chemistry, Inha University) ;
  • Im, Ji Sun (C-Industry Incubation Center, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Lee, Chul Wee (C-Industry Incubation Center, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Jung, Yongju (Department of Applied Chemical Engineering, Korea University of Technology and Education) ;
  • Kim, Seok (School of Chemical and Biochemical Engineering, Pusan National University)
  • Received : 2015.07.14
  • Accepted : 2015.09.06
  • Published : 2016.01.31

Abstract

Keywords

References

  1. Gao ZH, Zhang H, Cao GP, Han MF, Yang YS. Spherical porous VN and NiOx as electrode materials for asymmetric supercapacitor. Electrochim Acta, 87, 375 (2013). http://dx.doi.org/10.1016/j.electacta.2012.09.075.
  2. Anouti M, Couadou E, Timperman L, Galiano H. Protic ionic liquid as electrolyte for high-densities electrochemical double layer capacitors with activated carbon electrode material. Electrochim Acta, 64, 110 (2012). http://dx.doi.org/10.1016/j.electacta. 2011.12.120.
  3. Oh M, Kim S. Synthesis and electrochemical analysis of polyaniline/TiO2 composites prepared with various molar ratios between aniline monomer and para-toluenesulfonic acid. Electrochim Acta, 78, 279 (2012). http://dx.doi.org/10.1016/j.electacta.2012.05.109.
  4. Kim MG, Kim K, Kim S. Conducting and interface characterization of carbonate-type organic electrolytes containing EMImBF4 as an additive against activated carbon electrode, Carbon Letters, 16, 51 (2015) DOI: http://dx.doi.org/10.5714/CL.2015.16.1.051
  5. Lota G, Grzyb B, Machnikowska H, Machnikowski J, Frackowiak E. Effect of nitrogen in carbon electrode on the supercapacitor performance. Chem Phys Lett, 404, 53 (2005). http://dx.doi.org/10.1016/j.cplett.2005.01.074.
  6. Kim K, Jung Y, Kim S. Influence of ionic liquid additives on the conducting and interfacial properties of organic solvent-based electrolytes against an activated carbon electrode, Carbon Letters, 15, 187 (2014) DOI: http://dx.doi.org/10.5714/CL.2014.15.3.187.
  7. Oh M, Park SJ, Jung Y, Kim S. Electrochemical properties of polyaniline composite electrodes prepared by in-situ polymerization in titanium dioxide dispersed aqueous solution. Synth Met, 162, 695 (2012). http://dx.doi.org/10.1016/j.synthmet.2012.02.021.
  8. Kim M, Kim S. Electrochemical properties of non-aqueous electrolytes containing spiro-type ammonium salts. J Ind Eng Chem, 20, 4447 (2014). http://dx.doi.org/10.1016/j.jiec.2014.02.015.
  9. Burke A. R&D considerations for the performance and application of electrochemical capacitors. Electrochim Acta, 53, 1083 (2007). http://dx.doi.org/10.1016/j.electacta.2007.01.011.
  10. Kim M, Kim IJ, Yang S, Kim S. Fluoroethylene carbonate addition effect on electrochemical properties of mixed carbonate-based organic electrolyte solution for a capacitor. Bull Korean Chem Soc, 35, 466 (2014). http://dx.doi.org/10.5012/bkcs.2014.35.2.466.
  11. Wilkes JS, Zaworotko MJ. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J Chem Soc Chem Commun, (13), 965 (1992). http://dx.doi.org/10.1039/C39920000965.
  12. Paul A, Mandal PK, Samanta A. How transparent are the imidazolium ionic liquids? A case study with 1-methyl-3-butylimidazolium hexafluorophosphate, [bmim][PF6]. Chem Phys Lett, 402, 375 (2005). http://dx.doi.org/10.1016/j.cplett.2004.12.060.
  13. Bonhôte P, Dias AP, Papageorgiou N, Kalyanasundaram K, Grätzel M. Hydrophobic, highly conductive ambient-temperature molten salts. Inorg Chem, 35, 1168 (1996). http://dx.doi.org/10.1021/ic951325x.
  14. Brandt A, Balducci A. Theoretical and practical energy limitations of organic and ionic liquid-based electrolytes for high voltage electrochemical double layer capacitors. J Power Sources, 250, 343 (2014). http://dx.doi.org/10.1016/j.jpowsour.2013.10.147.
  15. Welton T. Room-temperature ionic liquids: solvents for synthesis and catalysis. Chem Rev, 99, 2071 (1999). http://dx.doi.org/10.1021/cr980032t.
  16. Kim K, Kim S. Effect of alkyl-chain length of imidazolium based ionic liquid on ion conducting and interfacial properties of organic electrolytes. J Ind Eng Chem, 26, 136 (2015). http://dx.doi.org/10.1016/j.jiec.2014.11.025.
  17. Andriyko YO, Reischl W, Nauer GE. Trialkyl-substituted imidazolium-based ionic liquids for electrochemical applications: basic physicochemical properties. J Chem Eng Data, 54, 855 (2009). http://dx.doi.org/10.1021/je800636k.
  18. Yuan CZ, Gao BO, Zhang XG. Electrochemical capacitance of NiO/Ru0.35V0.65O2 asymmetric electrochemical capacitor. J Power Sources, 173, 606 (2007). http://dx.doi.org/10.1016/j.jpowsour. 2007.04.034.
  19. Yu D, Dai L. Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J Phys Chem Lett, 1, 467 (2010). http://dx.doi.org/10.1021/jz9003137.
  20. Kang J, Wen J, Jayaram SH, Yu A, Wang X. Development of an equivalent circuit model for electrochemical double layer capacitors (EDLCs) with distinct electrolytes. Electrochim Acta, 115, 587 (2014). http://dx.doi.org/10.1016/j.electacta.2013.11.002.
  21. Lane GH. Electrochemical reduction mechanisms and stabilities of some cation types used in ionic liquids and other organic salts. Electrochim Acta, 83, 513 (2012). http://dx.doi.org/10.1016/j.electacta.2012.08.046.
  22. Hunt PA. Why does a reduction in hydrogen bonding lead to an increase in viscosity for the 1-butyl-2,3-dimethyl-imidazolium-based ionic liquids? J Phys Chem B, 111, 4844 (2007). http://dx.doi.org/10.1021/jp067182p.

Cited by

  1. Effect of solvated ionic liquids on the ion conducting property of composite membranes for lithium ion batteries vol.44, pp.10, 2018, https://doi.org/10.1007/s11164-018-3474-1