DOI QR코드

DOI QR Code

Mechanical interfacial adhesion of carbon fibers-reinforced polarized-polypropylene matrix composites: effects of silane coupling agents

  • Received : 2015.03.17
  • Accepted : 2015.07.10
  • Published : 2016.01.31

Abstract

Keywords

References

  1. Vaidya UK, Samalot F, Pillay S, Janowski GM, Husman G, Gleich K. Design and manufacture of woven reinforced glass/polypropylene composites for mass transit floor structure. J Compos Mater, 38, 1949 (2004). http://dx.doi.org/10.1177/0021998304048418.
  2. Ning H, Janowski GM, Vaidya UK, Husman G. Thermoplastic sandwich structure design and manufacturing for the body panel of mass transit vehicle. Compos Struct, 80, 82 (2007). http://dx.doi.org/10.1016/j.compstruct.2006.04.090.
  3. Ning H, Vaidya U, Janowski GM, Husman G. Design, manufacture and analysis of a thermoplastic composite frame structure for mass transit. Compos Struct, 80, 105 (2007). http://dx.doi.org/10.1016/j.compstruct.2006.04.036.
  4. Oya N, Hamada H. Mechanical properties and failure mechanisms of carbon fibre reinforced thermoplastic laminates. Compos Part A Appl Sci Manuf, 28, 823 (1997). http://dx.doi.org/10.1016/s1359-835x(97)00035-3.
  5. Bartus SD, Vaidya UK, Ulven CA. Design and development of a long fiber thermoplastic bus seat. J Thermoplast Compos Mater, 19, 131 (2006). http://dx.doi.org/10.1177/0892705706062184.
  6. Jacobs MJN, Van Dingenen JLJ. Ballistic protection mechanisms in personal armour. J Mater Sci, 36, 3137 (2001). http://dx.doi.org/10.1023/a:1017922000090.
  7. Ning H, Pillay S, Vaidya UK. Design and development of thermoplastic composite roof door for mass transit bus. Mater Des, 30, 983 (2009). http://dx.doi.org/10.1016/j.matdes.2008.06.066.
  8. Donnet JB, Bansal RC. Carbon Fibers. 2nd ed., Marcel Dekker, New York, NY (1990).
  9. Yosomiya R, Morimoto K, Nakajima A, Ikada Y, Suzuki T. Adhesion and Bonding in Composites. Marcel Dekker, New York, NY (1990).
  10. Meng L, Fan D, Zhang C, Jiang Z, Huang Y. The effect of oxidation treatment by KClO3/H2SO4 system on intersurface performance of carbon fibers. Appl Surf Sci, 268, 225 (2013). http://dx.doi.org/10.1016/j.apsusc.2012.12.066.
  11. Mäder E. Study of fibre surface treatments for control of interphase properties in composites. Compos Sci Technol, 57, 1077 (1997). http://dx.doi.org/10.1016/s0266-3538(97)00002-x.
  12. Park SJ, Kim MH, Lee JR, Choi S. Effect of fiber: polymer interactions on fracture toughness behavior of carbon fiber-reinforced epoxy matrix composites. J Colloid Interface Sci, 228, 287 (2000). http://dx.doi.org/10.1006/jcis.2000.6953.
  13. Deng S, Zhou X, Fan C, Lin Q, Zhou X. Release of interfacial thermal stress and accompanying improvement of interfacial adhesion in carbon fiber reinforced epoxy resin composites: Induced by diblock copolymers. Compos Part A Appl Sci Manuf, 43, 990 (2012). http://dx.doi.org/10.1016/j.compositesa.2012.01.004.
  14. Jang J, Kim HS. Performance improvement of glass fiber-poly(phenylene sulfide) composite. J Appl Polym Sci, 60, 2297 (1996). http://dx.doi.org/10.1002/(sici)1097-4628(19960620)60:12<2297::aid-app29>3.3.co;2-a.
  15. Walker PL, Thrower PA. Chemistry and Physics of Carbon. Marcel Dekker, New York, NY (1973).
  16. Park SJ, Jin JS, Lee JR. Enhancement of interfacial adhesion of glass fibers-reinforced unsaturated polyester matrix composites: effect of gamma-methacryloxypropyltrimethoxy silane treatment containing gamma-aminopropyltriethoxy silane. J Korean Ind Eng Chem, 12, 143 (2001).
  17. Kaynak C, Orgun O, Tincer T. Matrix and interface modification of short carbon fiber-reinforced epoxy. Polym Test, 24, 455 (2005). http://dx.doi.org/10.1016/j.polymertesting.2005.01.004.
  18. Lee JH, Rhee KY, Park SJ. Silane modification of carbon nanotubes and its effects on the material properties of carbon/CNT/epoxy three-phase composites. Compos Part A Appl Sci Manuf, 42, 478 (2011). http://dx.doi.org/10.1016/j.compositesa.2011.01.004.
  19. Bismarck A, Kumru ME, Song B, Springer J, Moos E, Karger-Kocsis J. Study on surface and mechanical fiber characteristics and their effect on the adhesion properties to a polycarbonate matrix tuned by anodic carbon fiber oxidation. Compos Part A Appl Sci Manuf, 30, 1351 (1999). http://dx.doi.org/10.1016/s1359-835x(99)00048-2.
  20. Qian X, Wang X, Ouyang Q, Chen Y, Yan Q. Effect of ammoniumsalt solutions on the surface properties of carbon fibers in electrochemical anodic oxidation. Appl Surf Sci, 259, 238 (2012). http://dx.doi.org/10.1016/j.apsusc.2012.07.025.
  21. Yuan H, Wang C, Zhang S, Lin X. Effect of surface modification on carbon fiber and its reinforced phenolic matrix composite. Appl Surf Sci, 259, 288 (2012). http://dx.doi.org/10.1016/j.apsusc.2012.07.034.
  22. Van Oss CJ. Interfacial Forces in Aqueous Media. Marcel Dekker, New York, NY (1994).
  23. Peng Q, Li Y, He X, Lv H, Hu P, Shang Y, Wang C, Wang R, Sritharan T, Du S. Interfacial enhancement of carbon fiber composites by poly(amido amine) functionalization. Compos Sci Technol, 74, 37 (2013). http://dx.doi.org/10.1016/j.compscitech.2012.10.005.
  24. Washburn EW. The dynamics of capillary flow. Phys Rev, 17, 273 (1921). http://dx.doi.org/10.1103/physrev.17.273.
  25. Fowkes FM. Determination of interfacial tensions, contact angles, and dispersion forces in surfaces by assuming additivity of intermolecular interactions in surfaces. J Phys Chem, 66, 382 (1962). http://dx.doi.org/10.1021/j100808a524.
  26. Fowkes FM. Additivity of intermolecular forces at interfaces: I. Determination of the contribution to surface and interfacial tensions of dispersion forces in various liquids 1. J Phys Chem, 67, 2538 (1963). http://dx.doi.org/10.1021/j100806a008.
  27. Park SJ, Kim BJ, Seo DI, Rhee KY, Lyu YY. Effects of a silane treatment on the mechanical interfacial properties of montmorillonite/epoxy nanocomposites. Mat Sci Eng A, 526, 74 (2009). http://dx.doi.org/10.1016/j.msea.2009.07.023.
  28. Fowkes FM, Harkins WD. The state of monolayers adsorbed at the interface solid: aqueous solution. J Am Chem Soc, 62, 3377 (1940). http://dx.doi.org/10.1021/ja01869a029.
  29. Kim KW, Lee HM, Kim BS, Hwang SH, Kwac LK, An KH, Kim BJ. Preparation and thermal properties of polyethylene-based carbonized fibers. Carbon Lett, 16, 62 (2015). http://dx.doi.org/10.5714/cl.2015.16.1.062.
  30. Karsli NG, Aytac A. Effects of maleated polypropylene on the morphology, thermal and mechanical properties of short carbon fiber reinforced polypropylene composites. Mater Des, 32, 4069 (2011). http://dx.doi.org/10.1016/j.matdes.2011.03.021.
  31. Szpieg M, Giannadakis K, Asp LE. Viscoelastic and viscoplastic behavior of a fully recycled carbon fiber-reinforced maleic anhydride grafted polypropylene modified polypropylene composite. J Compos Mater, 46, 1633 (2011). http://dx.doi.org/10.1177/0021998311423858.
  32. Wong KH, Mohammed DS, Pickering SJ, Brooks R. Effect of coupling agents on reinforcing potential of recycled carbon fibre for polypropylene composite. Compos Sci Technol, 72, 835 (2012). http://dx.doi.org/10.1016/j.compscitech.2012.02.013.
  33. Gao Y, Xu W, Gao J, Liang D, Fu Q, Zhang Q, Li Z. Highly efficient load transfer in polypropylene/vapor grown carbon fiber rnanocomposites. Compos Part A Appl Sci Manuf, 45, 35 (2013). http://dx.doi.org/10.1016/j.compositesa.2012.09.011.
  34. Kim KW, Lee HM, An JH, Kim BS, Min BG, Kang SJ, An KH, Kim BJ. Effects of cross-linking methods for polyethylene-based carbon fibers: review. Carbon Lett, 16, 147 (2015). http://dx.doi.org/10.5714/cl.2015.16.3.147.

Cited by

  1. Effects of electrochemical oxidation of carbon fibers on interfacial shear strength using a micro-bond method vol.19, 2016, https://doi.org/10.5714/CL.2016.19.032
  2. Improvement of Interaction in a Composite Structure by Using a Sol-Gel Functional Coating on Carbon Fibers vol.10, pp.9, 2017, https://doi.org/10.3390/ma10090990
  3. Surface modification of high-performance polyimide fibres by using a silane coupling agent pp.1568-5543, 2018, https://doi.org/10.1080/09276440.2018.1526607
  4. Effects of Biceramic AlN-SiC Microparticles on the Thermal Properties of Paraffin for Thermal Energy Storage vol.2018, pp.1687-4129, 2018, https://doi.org/10.1155/2018/8632350