DOI QR코드

DOI QR Code

Some Monascus purpureus Genomes Lack the Monacolin K Biosynthesis Locus

  • Kwon, Hyung-Jin (Department of Biological Science and Bioinformatics, Myongji University) ;
  • Balakrishnan, Bijinu (Department of Biological Science and Bioinformatics, Myongji University) ;
  • Kim, Yeon-Ki (Department of Biological Science and Bioinformatics, Myongji University)
  • Received : 2015.10.30
  • Accepted : 2015.11.26
  • Published : 2016.03.31

Abstract

Two Monascus purpureus genomes lack the monacolin K biosynthesis locus (mok), while Monascus species are generally assumed to be monacolin K producers. These M. purpureus harbor a fusion of mokA and mokB orthologues. This finding suggests that an ancestral mok locus underwent a deletion event in the M. purpureus genome.

Keywords

References

  1. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25, 3389-402. https://doi.org/10.1093/nar/25.17.3389
  2. Balakrishnan B, Chen CC, Pan TM, and Kwon HJ (2014) Mpp7 controls regioselective Knoevenagel condensation during the biosynthesis of Monascus azaphilone pigments. Tetrahedron Lett 55, 1640-3. https://doi.org/10.1016/j.tetlet.2014.01.090
  3. Balakrishnan B, Karki S, Chiu SH, Kim HJ, Suh JW, Nam B et al. (2013) Genetic localization and in vivo characterization of a Monascus azaphilone pigment biosynthetic gene cluster. Appl Microbiol Biotechnol 97, 6337-45. https://doi.org/10.1007/s00253-013-4745-9
  4. Chen YP, Tseng CP, Chien IL, Wang WY, Liaw LL, and Yuan GF (2008a) Exploring the distribution of citrinin biosynthesis related genes among Monascus species. J Agric Food Chem 56, 11767-72. https://doi.org/10.1021/jf802371b
  5. Chen YP, Tseng CP, Liaw LL, Wang CL, Chen IC, Wu WJ et al. (2008b) Cloning and characterization of monacolin K biosynthetic gene cluster from Monascus pilosus. J Agric Food Chem 56, 5639-46. https://doi.org/10.1021/jf800595k
  6. Feng Y, Shao Y, and Chen F (2012) Monascus pigments. Appl Micorbiol Biotechnol 96, 1421-40. https://doi.org/10.1007/s00253-012-4504-3
  7. Kennedy J, Auclair K, Kendrew SG, Park C, Vederas JC, and Hutchinson CR (1999) Modulation of polyketide synthase activity by accessory proteins during lovastatin biosynthesis. Science 284, 1368-72. https://doi.org/10.1126/science.284.5418.1368
  8. Lee CL and Pan TM (2012) Development of Monascus fermentation technology for high hypolipidemic effect. Appl Microbiol Biotechnol 94, 1449-59. https://doi.org/10.1007/s00253-012-4083-3
  9. Li YG, Zhang F, Wang ZT, and Hu ZB (2004) Identification and chemical profiling of monacolins in red yeast rice using high-performance liquid chromatography with photodiode array detector and mass spectrometry. J Pharm Biomed Anal 35, 1101-12. https://doi.org/10.1016/j.jpba.2004.04.004
  10. Liu Q, Xie N, He Y, Wang L, Shao Y, Zhao H et al. (2014) MpigE, a gene involved in pigment biosynthesis in Monascus ruber M7. Appl Microbiol Biotechnol 98, 285-96. https://doi.org/10.1007/s00253-013-5289-8
  11. Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY et al. (2015) CDD: NCBI's conserved domain database. Nucleic Acids Res 43, D222-6. https://doi.org/10.1093/nar/gku1221
  12. Patakova P (2013) Monascus secondary metabolites: production and biological activity. J Ind Microbiol Biotechnol 40, 169-81. https://doi.org/10.1007/s10295-012-1216-8
  13. Sakai K, Kinoshita H, Shimizu T, and Nihira T (2008) Construction of a citrinin gene cluster expression system in heterologous Aspergillus oryzae. J Biosci Bioeng 106, 466-72. https://doi.org/10.1263/jbb.106.466
  14. Shimizu T, Kinoshita H, and Nihira T (2007) Identification and in vivo functional analysis by gene disruption of ctnA, an activator gene involved in citrinin biosynthesis in Monascus purpureus. Appl Environ Microbiol 73, 5097-103. https://doi.org/10.1128/AEM.01979-06
  15. Wang TH and Lin TF (2007) Monascus rice products. Adv Food Nutr Res 53, 123-59. https://doi.org/10.1016/S1043-4526(07)53004-4
  16. Yang Y, Liu B, Du X, Li P, Liang B, Cheng X et al. (2015) Complete genome sequence and transcriptomics analyses reveal pigment biosynthesis and regulatory mechanisms in an industrial strain, Monascus purpureus YY-1. Sci Rep 5:8331. https://doi.org/10.1038/srep08331
  17. Yasuda M, Tachibana S, and Kuba-Miyara M (2012) Biochemical aspects of red koji and tofuyo prepared using Monascus fungi. Appl Microbiol Biotechnol 96, 49−60. https://doi.org/10.1007/s00253-012-4300-0

Cited by

  1. Alleviation of metabolic syndrome by monascin and ankaflavin: the perspective of Monascus functional foods vol.8, pp.6, 2017, https://doi.org/10.1039/C7FO00406K
  2. Production of a hypothetical polyene substance by activating a cryptic fungal PKS-NRPS hybrid gene in Monascus purpureus vol.61, pp.1, 2018, https://doi.org/10.3839/jabc.2018.013
  3. Effects of pigment and citrinin biosynthesis on the metabolism and morphology of Monascus purpureus in submerged fermentation vol.29, pp.7, 2016, https://doi.org/10.1007/s10068-020-00745-3
  4. Divergence of metabolites in three phylogenetically close Monascus species ( M. pilosus , M. ruber, and M. purpureus ) based on secondary metabolite biosynthetic gene clusters vol.21, pp.1, 2016, https://doi.org/10.1186/s12864-020-06864-9
  5. Ecological and Biotechnological Aspects of Pigmented Microbes: A Way Forward in Development of Food and Pharmaceutical Grade Pigments vol.9, pp.3, 2016, https://doi.org/10.3390/microorganisms9030637