DOI QR코드

DOI QR Code

Maintenance of Proliferation and Adipogenic Differentiation by Fibroblast Growth Factor-2 and Dexamethasone Through Expression of Hepatocyte Growth Factor in Bone Marrow-derived Mesenchymal Stem Cells

  • Oh, Ji-Eun (Cell Therapy and Tissue Engineering Center, Wonju College of Medicine, Yonsei University) ;
  • Eom, Young Woo (Cell Therapy and Tissue Engineering Center, Wonju College of Medicine, Yonsei University)
  • Received : 2016.03.22
  • Accepted : 2016.03.31
  • Published : 2016.03.31

Abstract

Several studies have investigated the various effects of dexamethasone (Dex) on the proliferation and differentiation of mesenchymal stem cells (MSCs). Previously, we reported that co-treatment with L-ascorbic acid 2-phosphate and fibroblast growth factor (FGF)-2 maintained differentiation potential in MSCs through expression of hepatocyte growth factor (HGF). In this study, we investigated the effects of co-treatment with FGF-2 and Dex on the proliferation and differentiation potential of MSCs during a 2-month culture period. Co-treatment with FGF-2 and Dex increased approximately a 4.7-fold higher accumulation rate of MSC numbers than that by FGF-2 single treatment during a 2-month culture period. Interestingly, co-treatment with FGF-2 and Dex increased expression of HGF and maintained adipogenic differentiation potential during this culture period. These results suggest that co-treatment with FGF-2 and Dex preserves the proliferation and differentiation potential during long-term culture.

Keywords

References

  1. Aubin JE. Advances in the osteoblast lineage. Biochem Cell Biol. 1998. 76: 899-910. https://doi.org/10.1139/o99-005
  2. Bae SH, Ryu H, Rhee KJ, Oh JE, Baik SK, Shim KY, Kong JH, Hyun SY, Pack HS, Im C, Shin HC, Kim YM, Kim HS, Eom YW, Lee JI. L-ascorbic acid 2-phosphate and fibroblast growth factor-2 treatment maintains differentiation potential in bone marrow-derived mesenchymal stem cells through expression of hepatocyte growth factor. Growth Factors. 2015. 33: 71-78. https://doi.org/10.3109/08977194.2015.1013628
  3. Barzilay R, Melamed E, Offen D. Introducing transcription factors to multipotent mesenchymal stem cells: making transdifferentiation possible. Stem Cells. 2009. 27: 2509-2515. https://doi.org/10.1002/stem.172
  4. Beresford JN, Joyner CJ, Devlin C, Triffitt JT. The effects of dexamethasone and 1,25-dihydroxyvitamin D3 on osteogenic differentiation of human marrow stromal cells in vitro. Arch Oral Biol. 1994. 39: 941-947. https://doi.org/10.1016/0003-9969(94)90077-9
  5. Both SK, van der Muijsenberg AJ, van Blitterswijk CA, de Boer J, de Bruijn JD. A rapid and efficient method for expansion of human mesenchymal stem cells. Tissue Eng. 2007. 13: 3-9. https://doi.org/10.1089/ten.2005.0513
  6. Caplan AI. Mesenchymal stem cells. J Orthop Res. 1991. 9: 641-650. https://doi.org/10.1002/jor.1100090504
  7. Caplan AI. Mesenchymal stem cells: cell-based reconstructive therapy in orthopedics. Tissue Eng. 2005. 11: 1198-1211. https://doi.org/10.1089/ten.2005.11.1198
  8. Caplan AI, Correa D. 2011. The MSC: an injury drugstore. Cell Stem Cell. 2011. 9: 11-15. https://doi.org/10.1016/j.stem.2011.06.008
  9. Cheng SL, Yang JW, Rifas L, Zhang SF, Avioli LV. Differentiation of human bone marrow osteogenic stromal cells in vitro: induction of the osteoblast phenotype by dexamethasone. Endocrinology. 1994. 134: 277-286. https://doi.org/10.1210/endo.134.1.8275945
  10. Cheng SL, Zhang SF, Avioli LV. Expression of bone matrix proteins during dexamethasone-induced mineralization of human bone marrow stromal cells. J Cell Biochem. 1996. 61: 182-193. https://doi.org/10.1002/(SICI)1097-4644(19960501)61:2<182::AID-JCB3>3.0.CO;2-Q
  11. Colter DC, Class R, DiGirolamo CM, Prockop DJ. Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proc Natl Acad Sci U S A. 2000. 97: 3213-3218. https://doi.org/10.1073/pnas.97.7.3213
  12. D'Ippolito G, Schiller PC, Ricordi C, Roos BA, Howard GA. Agerelated osteogenic potential of mesenchymal stromal stem cells from human vertebral bone marrow. J Bone Miner Res. 1999. 14: 1115-1122. https://doi.org/10.1359/jbmr.1999.14.7.1115
  13. Doorn J, Moll G, Le Blanc K, van Blitterswijk C, de Boer J. Therapeutic applications of mesenchymal stromal cells: paracrine effects and potential improvements. Tissue Eng Part B Rev. 2012. 18: 101-115. https://doi.org/10.1089/ten.teb.2011.0488
  14. Eom YW, Oh JE, Lee JI, Baik SK, Rhee KJ, Shin HC, Kim YM, Ahn CM, Kong JH, Kim HS, Shim KY. The role of growth factors in maintenance of stemness in bone marrow-derived mesenchymal stem cells. Biochem Biophys Res Commun. 2014. 445: 16-22. https://doi.org/10.1016/j.bbrc.2014.01.084
  15. Fatimah SS, Tan GC, Chua K, Fariha MM, Tan AE, Hayati AR. Stemness and angiogenic gene expression changes of serialpassage human amnion mesenchymal cells. Microvasc Res. 2013. 86: 21-29. https://doi.org/10.1016/j.mvr.2012.12.004
  16. Fromigue O, Marie PJ, Lomri A. Differential effects of transforming growth factor beta2, dexamethasone and 1,25-dihydroxyvitamin D on human bone marrow stromal cells. Cytokine. 1997. 9: 613-623. https://doi.org/10.1006/cyto.1997.0209
  17. Gao J, Caplan AI. Mesenchymal stem cells and tissue engineering for orthopaedic surgery. Chir Organi Mov. 2003. 88: 305-316.
  18. Hamidouche Z, Hay E, Vaudin P, Charbord P, Schule R, Marie PJ, Fromigue O. FHL2 mediates dexamethasone-induced mesenchymal cell differentiation into osteoblasts by activating Wnt/beta-catenin signaling-dependent Runx2 expression. FASEB J. 2008. 22: 3813-3822. https://doi.org/10.1096/fj.08-106302
  19. Hardy R, Cooper MS. Glucocorticoid-induced osteoporosis - a disorder of mesenchymal stromal cells? Front Endocrinol. 2011. 2: 24.
  20. Hong JH, Hwang ES, McManus MT, Amsterdam A, Tian Y, Kalmukova R, Mueller E, Benjamin T, Spiegelman BM, Sharp PA, Hopkins N, Yaffe MB. TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science. 2005. 309: 1074-1078. https://doi.org/10.1126/science.1110955
  21. Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem. 1997. 64: 295-312. https://doi.org/10.1002/(SICI)1097-4644(199702)64:2<295::AID-JCB12>3.0.CO;2-I
  22. Kim CH, Cheng SL, Kim GS. Effects of dexamethasone on proliferation, activity, and cytokine secretion of normal human bone marrow stromal cells: possible mechanisms of glucocorticoidinduced bone loss. J Endocrinol. 1999. 162: 371-379. https://doi.org/10.1677/joe.0.1620371
  23. Mendes SC, Tibbe JM, Veenhof M, Bakker K, Both S, Platenburg PP, Oner FC, de Bruijn JD, van Blitterswijk CA. Bone tissueengineered implants using human bone marrow stromal cells: effect of culture conditions and donor age. Tissue Eng. 2002. 8: 911-920. https://doi.org/10.1089/107632702320934010
  24. Mostafa NZ, Fitzsimmons R, Major PW, Adesida A, Jomha N, Jiang H, Uludag H. Osteogenic differentiation of human mesenchymal stem cells cultured with dexamethasone, vitamin D3, basic fibroblast growth factor, and bone morphogenetic protein-2. Connect Tissue Res. 2012. 53: 117-131. https://doi.org/10.3109/03008207.2011.611601
  25. Park BS, Jang KA, Sung JH, Park JS, Kwon YH, Kim KJ, Kim WS. Adipose-derived stem cells and their secretory factors as a promising therapy for skin aging. Dermatol Surg. 2008. 34: 1323-1326.
  26. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999. 284: 143-147. https://doi.org/10.1126/science.284.5411.143
  27. Pricola KL, Kuhn NZ, Haleem-Smith H, Song Y, Tuan RS. Interleukin-6 maintains bone marrow-derived mesenchymal stem cell stemness by an ERK1/2-dependent mechanism. J Cell Biochem. 2009. 108: 577-588. https://doi.org/10.1002/jcb.22289
  28. Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science. 1997. 276: 71-74. https://doi.org/10.1126/science.276.5309.71
  29. Prockop DJ, Olson SD. Clinical trials with adult stem/progenitor cells for tissue repair: let's not overlook some essential precautions. Blood. 2007. 109: 3147-3151. https://doi.org/10.1182/blood-2006-03-013433
  30. Sato Y, Araki H, Kato J, Nakamura K, Kawano Y, Kobune M, Sato T, Miyanishi K, Takayama T, Takahashi M, Takimoto R, Iyama S, Matsunaga T, Ohtani S, Matsuura A, Hamada H, Niitsu Y. Human mesenchymal stem cells xenografted directly to rat liver are differentiated into human hepatocytes without fusion. Blood. 2005. 106: 756-763. https://doi.org/10.1182/blood-2005-02-0572
  31. Sekiya I, Larson BL, Smith JR, Pochampally R, Cui JG, Prockop DJ. Expansion of human adult stem cells from bone marrow stroma: conditions that maximize the yields of early progenitors and evaluate their quality. Stem Cells. 2002. 20: 530-541. https://doi.org/10.1634/stemcells.20-6-530
  32. Shabbir A, Zisa D, Lin H, Mastri M, Roloff G, Suzuki G, Lee T. Activation of host tissue trophic factors through JAK-STAT3 signaling: a mechanism of mesenchymal stem cell-mediated cardiac repair. Am J Physiol Heart Circ Physiol. 2010. 299: H1428-1438. https://doi.org/10.1152/ajpheart.00488.2010
  33. Siddappa R, Licht R, van Blitterswijk C, de Boer J. Donor variation and loss of multipotency during in vitro expansion of human mesenchymal stem cells for bone tissue engineering. J Orthop Res. 2007. 25: 1029-1041. https://doi.org/10.1002/jor.20402
  34. Stenderup K, Justesen J, Clausen C, Kassem M. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone. 2003. 33: 919-926. https://doi.org/10.1016/j.bone.2003.07.005
  35. Sze SK, de Kleijn DP, Lai RC, Khia Way Tan E, Zhao H, Yeo KS, Low TY, Lian Q, Lee CN, Mitchell W, El Oakley RM, Lim SK. Elucidating the secretion proteome of human embryonic stem cell-derived mesenchymal stem cells. Mol Cell Proteomics. 2007. 6: 1680-1689. https://doi.org/10.1074/mcp.M600393-MCP200
  36. Tang DQ, Cao LZ, Burkhardt BR, Xia CQ, Litherland SA, Atkinson MA, Yang LJ. In vivo and in vitro characterization of insulin-producing cells obtained from murine bone marrow. Diabetes. 2004. 53: 1721-1732. https://doi.org/10.2337/diabetes.53.7.1721
  37. Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation. 2002. 105: 93-98. https://doi.org/10.1161/hc0102.101442
  38. Walsh S, Jordan GR, Jefferiss C, Stewart K, Beresford JN. High concentrations of dexamethasone suppress the proliferation but not the differentiation or further maturation of human osteoblast precursors in vitro: relevance to glucocorticoidinduced osteoporosis. Rheumatology. 2001. 40: 74-83. https://doi.org/10.1093/rheumatology/40.1.74
  39. Wang FS, Ko JY, Yeh DW, Ke HC, Wu HL. Modulation of Dickkopf-1 attenuates glucocorticoid induction of osteoblast apoptosis, adipocytic differentiation, and bone mass loss. Endocrinology. 2008. 149: 1793-1801. https://doi.org/10.1210/en.2007-0910
  40. Wang FS, Lin CL, Chen YJ, Wang CJ, Yang KD, Huang YT, Sun YC, Huang HC. Secreted frizzled-related protein 1 modulates glucocorticoid attenuation of osteogenic activities and bone mass. Endocrinology. 2005. 146: 2415-2423. https://doi.org/10.1210/en.2004-1050
  41. Xiao Y, Peperzak V, van Rijn L, Borst J, de Bruijn JD. Dexamethasone treatment during the expansion phase maintains stemness of bone marrow mesenchymal stem cells. J Tissue Eng Regen Med. 2010. 4: 374-386. https://doi.org/10.1002/term.250
  42. Yang J, Kwon J, Kim M, Bae Y, Jin H, Park H, Eom YW, Rhee K-J. In vitro expansion of umbilical cord blood derived mesenchymal stem cells (UCB-MSCs) under hypoxic conditions. Biomed Sci Lett. 2015. 21: 40-49. https://doi.org/10.15616/BSL.2015.21.1.40
  43. Yun SP, Ryu JM, Han HJ. Involvement of beta1-integrin via PIP complex and FAK/paxillin in dexamethasone-induced human mesenchymal stem cells migration. J Cell Physiol. 2011. 226:683-692. https://doi.org/10.1002/jcp.22383