DOI QR코드

DOI QR Code

Estimation of Specific Leaf Area Index Using Direct Method by Leaf Litter in Gwangneung, Mt. Taewha and Mt. Gariwang

광릉숲, 태화산, 가리왕산 활엽수림에서 낙엽에 의한 수종별 엽면적지수 추정

  • Kwon, Boram (Department of Forest Resources, Kangwon National University) ;
  • Jeon, Jihyeon (Department of Forest Resources, Kangwon National University) ;
  • Kim, Hyun Seok (Department of Forest Sciences, Seoul National University) ;
  • Yi, Myong Jong (Department of Forest Resources, Kangwon National University)
  • Received : 2016.01.19
  • Accepted : 2016.03.16
  • Published : 2016.03.30

Abstract

Annual litterfall production and leaf area index (LAI, $m^2/m^2$) were estimated using litter traps in Gwangneung, Mt. Taewha and Mt. Gariwang. Annual total litter fall production including branch, bark, others was the highest in Gwangneung($7497.3{\pm}326.5kg/ha/yr$), which had the highest basal area at late successional stage, and followed by Mt. Taewha($5929.1{\pm}225.8kg/ha/yr$) and Mt. Gariwang($3,210.1{\pm}220.1kg/ha/yr$). Mt. Gariwang had the lowest litterfall production due to high elevation and short growing season even with the higher stand density and basal area than Mt. Taewha. Similarly, LAI, which was calculated by multiplying the mass of leaf litter with specific leaf area, was the highest in Gwangneung($5.99{\pm}0.69$) and followed by Mt. Taewha($5.20{\pm}0.24$) and Mt. Gariwang($4.06{\pm}0.42$) and the upper canopy species had the highest leaf area index in every sites (Gwangneung : 4.72, Mt. Taewha : 3.08, Mt. Gariwang : 2.19). However, species specific LAI estimation based on the relationship between basal area and leaf area was limited due to upper canopy species non-proportionality of basal area with LAI. In addition, the comparison between direct and indirect LAI measurement showed the importance of canopy clumping, especially at high density. Our study emphasized the necessity of direct LAI measurement using litter fall traps especially at temperate deciduous forest with diverse species.

광릉숲, 태화산 서울대 학술림, 가리왕산의 낙엽활엽수림에서 연간 낙엽 낙지 생산량과 가을철 낙엽에 의한 수종별 엽면적지수를 산출하고, 간접적인 방법의 것과 비교하였다. 연간 낙엽 낙지 생산량은 천이 단계 증가에 따른 임분의 바이오매스 축적량이나 수종구성 등에 따라 그 양과 비율이 다르게 나타났으며(Table 2), 특히 수종마다 낙엽의 양에 차이는 있지만 모든 임분에서 여름철 이후에 집중되는 경향을 보여(Fig. 1), 가을철의 한시적인 낙엽 수집만으로도 최대 엽면적지수의 추정은 유효한 것으로 나타났다. 더욱이, 이러한 낙엽의 수집으로 낙엽의 양 뿐만 아니라 수종마다 SLA와 탈락시기를 정확하게 추정할 수 있었고(Table 3), 간접방법으로는 불가능하기 때문에 국내에서는 시도되지 않았던 각 수종별 엽면적지수를 국내 최초로 산출 할 수 있었다(Fig. 2). 본 연구를 통하여 수종별 낙엽량과 엽면적지수는 각 수종의 흉고단면적과 유의한 상관관계를 보였으나, 간접방법에 의한 전체 엽면적지수를 흉고단면적의 비율을 곱하여 수종별 엽면적지수로 추정하는 것은 상당한 오차가 발생할 수 있음을 알 수 있었다(Fig. 3). 또한 간접방법에 의한 엽면적지수는 잎의 양이 늘고 밀집도가 높아질수록 과소평가되는 오류가 발생하기 쉽기 때문에(Fig. 4, 5), 직접방법에 의한 엽면적지수와의 평가는 필수적임을 확인할 수 있었다. 따라서, 낙엽에 의한 직접적인 엽면적지수의 측정을 시도함으로써 다양한 수종이 공존하는 우리나라 온대 활엽수림에서 임분의 수종 구성과 밀도, 천이단계, 입지환경 등에 따른 낙엽량과 수종별 엽면적지수의 변화 양상을 정량적으로 확인 할 수 있었다.

Keywords

References

  1. Albrektson, A., 1984: Sapwood basal area and needle mass of scots pine (Pinus sylvestris L.) trees in central Sweden. Forestry 57(1), 35-43. https://doi.org/10.1093/forestry/57.1.35
  2. Anten, N. P. R., and T. Hirose, 1999: Interspecific differences in above‐ground growth patterns result in spatial and temporal partitioning of light among species in a tall‐grass meadow. Journal of Ecology 87(4), 583-597. https://doi.org/10.1046/j.1365-2745.1999.00365.x
  3. Bartelink, H., 1997: Allometric relationships for biomass and leaf area of beech (Fagus sylvatica L). Annales des sciences forestieres, EDP Sciences, 39-50.
  4. Binkley, D., 1983: Ecosystem production in douglas-fir plantations: Interaction of red alder and site fertility. Forest Ecology and Management 5(3), 215-227. https://doi.org/10.1016/0378-1127(83)90073-7
  5. Bondeau, A., D. W. Kicklighter, J. Kaduk, and The P. Intercomparison, 1999: Comparing global models of terrestrial net primary productivity(NPP): Importance of vegetation structure on seasonal NPP estimates. Global Change Biology 5(S1), 35-45. https://doi.org/10.1046/j.1365-2486.1999.00005.x
  6. Bray, J. R., and E. Gorham, 1964: Litter production in forests of the world. Advances in Ecological Research 2, 101-157. https://doi.org/10.1016/S0065-2504(08)60331-1
  7. Chason, J. W., D. D. Baldocchi, and M. A. Huston, 1991: A comparison of direct and indirect methods for estimating forest canopy leaf area. Agricultural and Forest Meteorology 57(1), 107-128. https://doi.org/10.1016/0168-1923(91)90081-Z
  8. Chen, J. M., 1996: Optically-based methods for measuring seasonal variation of leaf area index in boreal conifer stands. Agricultural and Forest Meteorology 80(2), 135-163. https://doi.org/10.1016/0168-1923(95)02291-0
  9. Chen, J. M., W. Ju, J. Cihlar, D. Price, J. Liu, W. Chen, J. Pan, A. Black, and A. Barr, 2003: Spatial distribution of carbon sources and sinks in canada's forests. Tellus B 55(2), 622-641. https://doi.org/10.1034/j.1600-0889.2003.00036.x
  10. Chung, J. S., S. D. Kwon, M. W. Park, W. J. Kim and S. W. Kang, 1999: Forest inventory in chungbu experimental forest of Seoul national university. Research Bulletin of the Seoul University Forests 35, 80-87.
  11. Chiba, Y., 1998: Architectural analysis of relationship between biomass and basal area based on pipe model theory. Ecological Modelling 108(1), 219-225. https://doi.org/10.1016/S0304-3800(98)00030-1
  12. Choi, j., 2011: Estimation of leaf area index using upward and downward looking automatic digital fisheye cameras in a deciduous broadleaf forest. Kangwon National University Master's Degree 1-61. (in Korean with English abstract)
  13. Dufrene, E., and N. Breda, 1995: Estimation of deciduous forest leaf area index using direct and indirect methods. Oecologia 104(2), 156-162. https://doi.org/10.1007/BF00328580
  14. Ellsworth, D. S., and P. B. Reich, 1996: Photosynthesis and leaf nitrogen of amazonian rain forest trees along a secondary succession. Ecology 77, 581-594. https://doi.org/10.2307/2265632
  15. Eriksson, H., L. Eklundh, K. Hall, and A. Lindroth, 2005: Estimating LAI in deciduous forest stands. Agricultural and Forest Meteorology 129(1), 27-37. https://doi.org/10.1016/j.agrformet.2004.12.003
  16. Gholz, H. L., C. S. Perry, W. P. Cropper, and L. C. Hendry, 1985: Litterfall, decomposition, and nitrogen and phosphorus dynamics in a chronosequence of slash pine (Pinus elliottii) plantations. Forest Science 31(2), 463-478.
  17. Gower, S. T., C. J. Kucharik, and J. M. Norman, 1999: Direct and indirect estimation of leaf area index, fAPAR, and net primary production of terrestrial ecosystems. Remote Sensing of Environment 70(1), 29-51. https://doi.org/10.1016/S0034-4257(99)00056-5
  18. Ha, K. J., H. M. Oh, and K. Y. Kim, 2001: Inter-Annual and Intra Annual Variabilities of NDVI, LAI and Ts Estimated by AVHRR in Korea. Korean Journal of Remote Sensing 17(2), 111-119. (in Korean with English abstract)
  19. Ha, R., H. J. Shin, G. A. Park, and W. Y. Hong, 2008: The evaluation of application to MODIS LAI (leaf area index) product. Journal of the Korean Association of Geographic Information Studies 11(2), 61-72. (in Korean with English abstract)
  20. Jonckheere, I., S. Fleck, K. Nackaerts, B. Muys, P. Coppin, M. Weiss, and F. Baret, 2004: Review of methods for in situ leaf area index determination: Part I. theories, sensors and hemispherical photography. Agricultural and Forest Meteorology 121(1), 19-35. https://doi.org/10.1016/j.agrformet.2003.08.027
  21. Kang, M. S., H. J. Kwon, J. H. Lim, and J. Kim, 2009: Understory evapotranspiration measured by eddy-covariance in Gwangneung deciduous and coniferous forests. Korean Journal of Agricultural and Forest Meteorology 11(4), 233-246. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2009.11.4.233
  22. Kim, C. S., J. H. Lim, and J. H. Shin, 2003: Nutrient dynamics in litterfall and decomposing leaf litter at the Kwangneung deciduous broad-leaved natural forest. Korean Journal of Agricultural and Forest Meteorology 5(2), 87-93. (in Korean with English abstract)
  23. Kim, H. Y., M. H. Lee, S. W. Kim, A. B. Guenther, J. M. Park, G. N. Cho, and H. S. Kim, 2015: Measurements of isoprene and monoterpenes at Mt. Taewha and estimation of their emissions. Korean Journal of Agricultural and Forest Meteorology 17(3), 217-226. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2015.17.3.217
  24. Kim, J. H., H. M. Yang, and G. Z. Jin, 1999: The pattern of natural regeneration by three different silvicultural systems in a natural deciduous forest. The Journal of Korean Forest Society 88(2), 169-178. (in Korean with English abstract)
  25. Kim, J. H., 2004: One hundred years of ecology in Korea. Seoul National University Press, 179pp.
  26. Kim, J. H., and K. T. Kim, 2005: Estimation of potential evapotranspiration using LAI. Journal of the Korean Association of Geographic Information Studies 8(4), 1-13. (in Korean with English abstract)
  27. Kim, H. S., S. Palmroth, M. Therezien, P. Stenberg, and R. Oren, 2011: Analysis of the sensitivity of absorbed light and incident light profile to various canopy architecture and stand conditions. Tree Physiology 31(1), 30-47. https://doi.org/10.1093/treephys/tpq098
  28. Kitaoka, S., and T. Koike, 2005: Seasonal and yearly variations in light use and nitrogen use by seedlings of four deciduous broad-leaved tree species invading larch plantations. Tree Physiology 25(4), 467-475. https://doi.org/10.1093/treephys/25.4.467
  29. Kobayashi, H., Y. R. Ryu, D. D. Baldocchi, J. M. Welles, and J. M. Norman, 2013: On the correct estimation of gap fraction: How to remove scattered radiation in gap fraction measurements? Agricultural and Forest Meteorology 174, 170-183.
  30. Koike, T., 1988: Leaf structure and photosynthetic performance as related to the forest succession of deciduous Broad‐Leaved Trees. Plant Species Biology 3(2), 77-87. https://doi.org/10.1111/j.1442-1984.1988.tb00173.x
  31. Koo, C. D., K. H. Ka, W. C. Park, H. Park, S. R. Ryu, Y. W. Park, and T. H. Kim, 2007: Changes of leaf area index, physiological activities and soil water in Tricholoma matsutake producing pine forest ecosystem. Journal of Korean Forest Society 96(4), 438-447. (in Korean with English abstract)
  32. Korea Forest Service, 2009: Standing biomass and stand yield table (Project number: 11-1400377-000530-01). Korea forest research institute, 271pp.
  33. Korea Forest Service, 2014: Time series analysis of northern temperate forest characteristics and the development of forest management for climate change adaptation. Korea Forest Service, 12-15.
  34. Korea Forest Service, 2015: Time series analysis of northern temperate forest characteristics and the development of forest management for climate change adaptation. Korea Forest Service, 23pp.
  35. Korea national arboretum, 2016; http://www.forest.go.kr/ newfsweb/html/HtmlPage.do?pg=/kna/kna_0201.html&mn=KFS_15_05_02_01&orgId=kna/(2016.02.19)
  36. Kwon, B. R., N. J. Heo, H. Y. Shin, H. S. Kim, P. S. Park and M. J. Yi, 2014: Nutrient use strategy of Carpinus cordata saplings growing under different forest stand conditions. Korean Journal of Agricultural and Forest Meteorology 16(3), 188-196. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2014.16.3.188
  37. Kwon, B., J. Jeon, H. S. Kim, and M. J. Yi, 2016: Direct leaf area index estimation by classification of leaf litter in a mixed deciduous broad-leaved forest in central Korea (in press). Korean Journal of Agricultural and Forest Meteorology. (in Korean with English abstract)
  38. Le Dantec, V., E. Dufrene, and B. Saugier, 2000: Interannual and spatial variation in maximum leaf area index of temperate deciduous stands. Forest Ecology and Management 134(1), 71-81. https://doi.org/10.1016/S0378-1127(99)00246-7
  39. Lee, K. S., S. H. Kim, Y. I. Park, and K. C. Jang, 2003: Generation of forest leaf area index(LAI) map using multispectral statellite data and field measurements. Korean Journal of Remote Sensing 19(5), 371-380. (in Korean with English abstract)
  40. Lee, K. S., S. H. Kim, J. H. Park, T. G. Kim, Y. I. Park, and C. S. Woo, 2006: Estimation of forest LAI in close canopy situation using optical remote sensing data. Korean Journal of Remote Sensing 22(5), 305-311. (in Korean with English abstract) https://doi.org/10.7780/kjrs.2006.22.5.305
  41. Li, X., M. J. Yi, Y. Son, P. S. Park, K. H. Lee, Y. M. Son, R. H. Kim, and M. J. Jeong, 2011: Biomass and carbon storage in an age-sequence of Korean pine (Pinus koraiensis) plantation forests in central Korea. Journal of Plant Biology 54(1), 33-42. https://doi.org/10.1007/s12374-010-9140-9
  42. Lichtenthaler, H. K., F. Babani, and G. Langsdorf, 2007: Chlorophyll fluorescence imaging of photosynthetic activity in sun and shade leaves of trees. Photosynthesis Research 93(1-3), 235-244. https://doi.org/10.1007/s11120-007-9174-0
  43. Liu, Z., G. Jin, J. M. Chen, and Y. Qi, 2015: Evaluating optical measurements of leaf area index against litter collection in a mixed broadleaved-Korean pine forest in china. Trees 29(1), 59-73. https://doi.org/10.1007/s00468-014-1058-2
  44. McCarthy, R., R. Oren, A.C. Finizi, D. S. Ellsworth, H. S. Kim, K. H. Johnsen, and B. Millar, 2007: Temporal dynamics and spatial variability in the enhancement of canopy leaf area under elevated atmospheric $CO_2$. Global Change Biology 13(12), 2479-2497. https://doi.org/10.1111/j.1365-2486.2007.01455.x
  45. Niinemets, U., 2007: Photosynthesis and resource distribution through plant canopies. Plant, Cell & Environment 30(9), 1052-1071. https://doi.org/10.1111/j.1365-3040.2007.01683.x
  46. Osada, N., H. Takeda, H. Kawaguchi, A. Furukawa, and M. Awang, 2003: Estimation of crown characters and leaf biomass from leaf litter in a Malaysian canopy species, elateriospermum tapos (euphorbiaceae). Forest Ecology and Management 177(1), 379-386. https://doi.org/10.1016/S0378-1127(02)00393-6
  47. Baek, W. G., W. G. Park, and U. C. Lee, 1998: Flora and vegetation of resources plants in the Mt. Kariwang (Kangwondo). Korean Journal of Plant Resources 11(2), 217-243.
  48. Raich, J. W. and K. J. Nadelhoffer, 1989: Belowground carbon allocation in forest ecosystems: Global trends. Ecology 70(5), 1346-1354. https://doi.org/10.2307/1938194
  49. Ryu, D. U., M. K. Moon, J. H. Park, S. S. Cho, T. K. Kim, and H. S. Kim, 2014a: Development of allometric equations for V age-class Pinus koraiensis in Mt. Taewha plantation, Gyeonggi-do. Korean Journal of Agricultural and Forest Meteorology 16(1), 29-38. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2014.16.1.29
  50. Ryu, Y. R., G. L. Lee, S. H. Jeon, Y. K. Song, and H. S. Kim, 2014b: Monitoring multi-layer canopy spring phenology of temperate deciduous and evergreen forests using low-cost spectral sensors. Remote Sensing of Environment 149, 227-238. https://doi.org/10.1016/j.rse.2014.04.015
  51. Ryu, Y. R., T. Nilson, H. Kobayashi, O. Sonnentag, B.E. Law, and D. D. Baldocchi, 2010: On the correct estimation of effective leaf area index: Does it reveal information on clumping effects? Agricultural and Forest Meteorology 150(3), 463-472. https://doi.org/10.1016/j.agrformet.2010.01.009
  52. Son, S. Y., K. C. Kwon, and T. S. Jeong, 2002: Productive structure and net production of Quecus mongoilca forest in Mt. Taehwa (Kwangju, Kyonggi-do). Journal of Korean Forest Energy 21(1), 76-82. (in Korean with English abstract)
  53. Son, Y., I., D. Y. Kim, I. H. Park, M. J. Yi, H. O. Jin, 2007: Production and nutrient cycling of Oak forest in Korea: A case study of Quercus mongolica and Q. variabilis stand. Kangwon National University press, 51-61.
  54. Song, Y. K., and Y. R. Ryu, 2015: Seasonal changes in vertical canopy structure in a temperate broadleaved forest in Korea. Ecological Research 30, 821-831. https://doi.org/10.1007/s11284-015-1281-3
  55. Stenberg, P., S. Linder, H. Smolander, and J. Flower-Ellis, 1994: Performance of the LAI-2000 plant canopy analyzer in estimating leaf area index of some scots pine stands. Tree Physiology 14(7-9), 981-995. https://doi.org/10.1093/treephys/14.7-8-9.981
  56. Vogt, K. A., C. C. Grier, and D. J. Vogt, 1986: Production, turnover, and nutrient dynamics of above-and belowground detritus of world forests. Advances in Ecological Research 15(3), 3-377.
  57. Walcroft, A. S., K. J. Brown, W. S. F. Schuster, D. T. Tissue, M. H. Turnbull, K. L. Griffin, and D. Whitehead, 2005: Radiative transfer and carbon assimilation in relation to canopy architecture, foliage area distribution and clumping in a mature temperate rainforest canopy in New Zealand. Agricultural and Forest Meteorology 135(1), 326-339. https://doi.org/10.1016/j.agrformet.2005.12.010
  58. Wang, P., R. Sun, J. Hu, Q. Zhu, Y. Zhou, L. Li, and J. Chen, 2007: Measurements and simulation of forest leaf area index and net primary productivity in northern China. Journal of Environmental Management 85(3), 607-615. https://doi.org/10.1016/j.jenvman.2006.08.017
  59. Watanabe, T., M. Yokozawa, S. Emori, K. Takata, A. Sumida, and T. Hara, 2004: Developing a multilayered integrated numerical model of surface physics-growing plants interaction (MINoSGI). Global Change Biology 10(6), 963-982. https://doi.org/10.1111/j.1529-8817.2003.00768.x
  60. Zhou, G., L. Guan, X. Wei, D. Zhang, Q. Zhang, J. Yan, D. Wen, J. Liu, S. Liu, Z. Huang, G. Kong, J. Mo, and Q. Yu, 2007: Litterfall production along successional and altitudinal gradients of subtropical monsoon evergreen broadleaved forests in Guangdong, China. Plant Ecology 188(1), 77-89. https://doi.org/10.1007/s11258-006-9149-9