DOI QR코드

DOI QR Code

Soil Water Storage and Antecedent Precipitation Index at Gwangneung Humid-Forested Hillslope

광릉 산지사면에서의 선행강우지수와 토양저류량 비교연구

  • Gwak, Yong-Seok (Research Institute of Industrial Technology(RIIT), Pusan National University) ;
  • Kim, Su-Jin (Division of Forest Restoration, National Institute of Forest Science) ;
  • Lee, Eun-Hyung (Department of Environmental Engineering/Water Resources Environmental Laboratory, Pusan National University) ;
  • Hamm, Se-Yeong (Department of Geological Sciences, Pusan National University) ;
  • Kim, Sang-Hyun (Department of Environmental Engineering/Water Resources Environmental Laboratory, Pusan National University)
  • 곽용석 (부산대학교 생산기술연구소) ;
  • 김수진 (국립산림과학원 산림복원연구과) ;
  • 이은형 (부산대학교 환경공학과) ;
  • 함세영 (부산대학교 지질환경과학과) ;
  • 김상현 (부산대학교 환경공학과)
  • Received : 2016.02.06
  • Accepted : 2016.03.21
  • Published : 2016.03.30

Abstract

The temporal variation of soil water storage is important in hydrological modeling. In order to evaluate an antecedent wetness state, the antecedent precipitation index (API) has been used. The aim of this article is to compare observed soil water storage with APIs calculated by widely used four equations, to configure the relationship between soil water storage and API by a regression model for one-year(2009), and to predict the soil water storage for the next two years(2010~2011). The soil water storage was evaluated from the observed soil moisture dataset in soil depths of 10, 30, 60cm at 21 locations by TDR measurement system for 3 years. As a result, API with the exponential function among the four equations can describe the variation of the observed soil water storage. Monthly optimized parameters of the API's equations seemed to be roughly related with the (potential) evapotranspiration (PET). Using revised monthly optimized parameters of APIs considering the seasonal pattern of PET, we characterize the relationship between API and the observed soil water storage for one year, which looks better than those of other researches.

본 연구에서는 강우-유출모델링에서 선행습윤상태를 파악하기 위해 자주 사용되는 여러 선행강우지수를 활용하여, 실제 측정된 토양수분자료들로부터 평가된 토양 저류량과의 비교 분석하고자 하였다. 나아가, 선행강우지수와 측정된 토양저류의 변화특성을 이용하여, 이전연구들에 비해 보다 명확한 관계를 이끌어낼 수 있었다. 이 관계를 바탕으로 약 2년여동안의 강우자료만을 통해 일 토양저류량을 모의하였으며, 측정된 일 토양저류량 값과 비교를 하였다. 모의된 토양저류량은 실제 측정된 토양저류량의 변화를 대체적으로 잘 묘사하고 있지만, 식생의 계절적인 변화와 영향과 관련한 수문학적 과정들의 변화로 인해 다소 차이가 있었다. 비록 본 연구결과가 경험 식으로부터 도출되었지만, 미 계측유역에서의 선행습윤상태를 파악하는 데 유용할 것으로 판단된다.

Keywords

References

  1. Choi, H. T, Y. H. Jung, K. H. Kim, J. Y. Yoo, C. H. Lee, and B. H. Goo, 2011: Investigation of Water Cycle in Forested catchment, National Institute of Forest Science, 11-1400377-000450 (research report). (in Korean)
  2. Beven, K. J, and P. Germann, 1982: Macropores and water flow in soils, Water Resources Research 18(5), 1311-1325. https://doi.org/10.1029/WR018i005p01311
  3. Brooca, L, F. Melone, and T. Moramarco, 2005: Empirical and conceptual approaches for soil moisture estimation in view of event-based rainfall-runoff modeling. Progress in surface and subsurface water studies at the plot and small basin scale, F. Maraga and M. Arattano, eds, IHP-VI Technical Documents in Hydrology 77, UNESCO, Paris, 1-8.
  4. Brooca, L, F. Melone, and T. Moramarco, 2008: On the estimation of antecedent wetness conditions in rainfall-runoff modelling. Hydrological Processes 22, 629-642. https://doi.org/10.1002/hyp.6629
  5. Brooca, L, F. Melone, and T. Moramarco, and V. P. Singh, 2009: Assimilation of observed soil moisture data in storm rainfall-runoff modeling. Journal of Hydrologic Engineering (ASCE) DOI: 10.1061/(ASCE)1084-0699 14:2(153), 153-165.
  6. Descroix, L, J. F. Nouvelot, and M. Vauclin, 2002: Evaluation of an antecedent precipitation index to model runoff yield in the western Sierra Madre (North-west Mexico). Journal of Hydrology 263, 114-130. https://doi.org/10.1016/S0022-1694(02)00047-1
  7. Heo, C. H, K. S. Lim, K. S. Ahn, and H. K. Hong, 2002: Flood Runoff Simulation Model by Using API. Journal of Korea Water Resources Association 35, 331-344. (in Korean with English abstract) https://doi.org/10.3741/JKWRA.2002.35.3.331
  8. Kawasaki, M., N. Ohte, and M. Katsuvama, 2005: Biogeochemical and hydrological controls on carbon export from a forested catchment in central Japan. Ecological Research 20, 347-358. https://doi.org/10.1007/s11284-005-0050-0
  9. Kim, N. H, S. Y. Hamm, T. Y. Kim, J. Y. Jung, H. T. Jeon, and H. S. Kim, 2008: Estimation of groundwater storage change and its relationship with geology in Eonyang area, Ulsan megacity. The journal of Engineering geology 18, 263-276. (in Korean with English abstract)
  10. Kim, S. H, Y. S. Kwak, and S. J. Kim, 2009: A soil moisture upscaling technique based on topographic attributes. Asia-Pacific Journal of Atmospheric Sciences 45, 121-135.
  11. Kim, S. J, J. Kim, and K. Kim, 2010: Organic carbon efflux from a deciduous forest catchment in Korea. Biogeosciences 7, 1323-1334. https://doi.org/10.5194/bg-7-1323-2010
  12. Kohler, M. A, and R. K. Linsley, 1951: Predicting the runoff from storm rainfall. Research Paper 34, US Weather Bureau, Washington DC.
  13. Lee, J. S, 2008: Water Resources Engineering, Goomibook, 79-81.
  14. Penna, D, H. J. Tromp-van Meerveld, A. Gobbi, M. Borga, and G. Dalla Fontana, 2011: The influence of soil moisture on threshold runoff generation processes in an alpine headwater catchment. Hydrology and Earth System Sciences 15, 689-702. https://doi.org/10.5194/hess-15-689-2011
  15. Rodriguez-Iturbe, I, and A. Porporato, 2004 : Ecohydrology of water controlled ecosystems: soil moisture and plant dynamics, Cambridge University Press. Cambridge, U.K
  16. Saxton, K. E, and A. T. Lenz, 1967: Antecedent retention indexes predict soil moisture, Journal of Hydraulics Division 93, 223-244.
  17. Sohrabi, M, J. Ryu, J. Abatzoglou, and J. Tracy, 2015: Development of Soil Moisture Drought Index to Characterize Droughts. Journal of Hydrologic Engineering (ASCE), 10.1061/(ASCE)HE.1943-5584.0001213, 04015025.
  18. Tani, M, 1997: Runoff generation processes estimated from hydrological observations on a steep forested hillslope with a thin soil layer. Journal of hydrology 200, 84-109. https://doi.org/10.1016/S0022-1694(97)00018-8
  19. Tramblay, Y, R. Bouaicha, L. Brooca, W. Dorigo, C. Bouvier, S. Camici, and E. Servat, 2012: Estimation of antecedent wetness conditions for flood modelling in northern Morocco Hydrology and Earth System Sciences 16, 4375-4386.
  20. Tromp-van Meerveld, H. J., and J. J. McDonnell, 2006: On the interrelations between topography, soil depth, soil moisture, transpiration rates and species distribution at the hillslope scale. Advances in Water Resources 29, 293-310. https://doi.org/10.1016/j.advwatres.2005.02.016
  21. Zhao, Y, F. Wei, H. Yang, and Y. Jiang, 2011: Discussion on using antecedent precipitation index to supplement relative soil moisture data series. Procedia Environmental Sciences 10, 1489-1495. https://doi.org/10.1016/j.proenv.2011.09.237