DOI QR코드

DOI QR Code

Empirical modeling of flexural and splitting tensile strengths of concrete containing fly ash by GEP

  • Received : 2015.01.12
  • Accepted : 2016.01.25
  • Published : 2016.04.25

Abstract

In this paper, the flexural strength ($f_{fs}$) and splitting tensile strength ($f_{sts}$) of concrete containing different proportions of fly ash have been modeled by using gene expression programming (GEP). Two GEP models called GEP-I and GEP-II are constituted to predict the $f_{fs}$ and $f_{sts}$ values, respectively. In these models, the age of specimen, cement, water, sand, aggregate, superplasticizer and fly ash are used as independent input parameters. GEP-I model is constructed by 292 experimental data and trisected into 170, 86 and 36 data for training, testing and validating sets, respectively. Similarly, GEP-II model is constructed by 278 experimental data and trisected into 142, 70 and 66 data for training, testing and validating sets, respectively. The experimental data used in the validating set of these models are independent from the training and testing sets. The results of the statistical parameters obtained from the models indicate that the proposed empirical models have good prediction and generalization capability.

Keywords

Acknowledgement

Supported by : Nigde University

References

  1. Atis, C.D. (2003), "High volume fly ash concrete with high strength and low drying shrinkage", J. Mater. Civ. Eng., 15(2), 153-156. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:2(153)
  2. Atis, C.D. (2005), "Strength properties of high-volume fly ash roller compacted and workable concrete, and influence of curing condition", Cem. Concr. Res., 35(6), 1112-1121. https://doi.org/10.1016/j.cemconres.2004.07.037
  3. Bharatkumar, B.H., Raghuprasad, B.K., Ramachandramurthy, D.S. Narayanan, B.K. and Gopalakrishnan, S. (2005), "Effect of fly ash and slag on the fracture characteristics of high performance concrete", Mater. Struct., 38(1), 63-72. https://doi.org/10.1007/BF02480576
  4. Cevik, A. and Cabalar, A.F. (2009), "Modelling damping ratio and shear modulus of sand-mica mixtures using genetic programming", Expert Syst. Appl., 36(4), 7749-7757. https://doi.org/10.1016/j.eswa.2008.09.010
  5. Ferreira, C. (2001), "Gene expression programming: a new adaptive algorithm for solving problems", Complex Syst., 13(2), 87-129.
  6. Ferreira, C. (2002), "Discovery of the Boolean Functions to the Best Density-Classification Rules Using Gene Expression Programming", Eds., Lutton, E. Foster, J.A. Miller, J., Ryan, C. and Tettamanzi, A.G.B., Proceedings of the 4th European Conference on GP, EuroGP 2002, 2278 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, Germany, 51-60.
  7. Ferreira, C. (2003), "Function finding and the creation of numerical constants in gene expression programming", Eds., Benitez, J.M., Cordon, O., Hoffmann, F. and Roy R., Advances in Soft Computing-Engineering Design and Manufacturing, Springer-Verlag, 257-266.
  8. Haque, M.N. and Kayali, O. (1998), "Properties of high-strength concrete using a fine fly ash", Cement Concrete Res., 28(10), 1445-1452. https://doi.org/10.1016/S0008-8846(98)00125-2
  9. Haque, M.N., Langan, B.W. and Ward, M.A. (1984), "High fly ash concrete", ACI Mater. J., 81, 54-60.
  10. Jau, W.C., Fu, C.W. and Yang, C.T. (2004), "Study of feasibility and mechanical properties for producing high-flowing concrete with recycled coarse aggregates", Int. Workshop on Sustainable Development and Concr. Technol., 89-102.
  11. Jerath S. and Hanson N. (2007), "Effect of fly ash content and aggregate gradation on the durability of concrete pavements", J. Mater. Civ. Eng., 19(5), 367-375. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:5(367)
  12. Kim, J.K., Han, S.H., Park, Y.D. and Noh, J.H. (1998), "Material properties of self-flowing concrete", J. Mater. Civ. Eng., 10(4), 244-249. https://doi.org/10.1061/(ASCE)0899-1561(1998)10:4(244)
  13. Kumar, B., Tike, G.K. and Nanda, P.K. (2007), "Evaluation of properties of high-volume fly-ash concrete for pavements", J. Mater. Civ. Eng., 19(10), 906-911. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:10(906)
  14. Lam, L., Wong, Y.L. and Poon, C.S. (1998), "Effect of FA and SF on compressive and fracture behaviors of concrete", Cement Concrete Res., 28, 271-283. https://doi.org/10.1016/S0008-8846(97)00269-X
  15. Mittal, A., Kaisare, M.B. and Rajendrakumar, S. (2006), "Parametric study on use of pozzolanic materials in concrete", New Build. Mater. Constr. World, 94-112.
  16. Mohammed, B.S. and Fang, O.C. (2011), "Mechanical and durability properties of concretes containing paper-mill residuals and fly ash", Constr. Build. Mater., 25(2), 717-725. https://doi.org/10.1016/j.conbuildmat.2010.07.015
  17. Saridemir, M. (2011), "Empirical modeling of splitting tensile strength from cylinder compressive strength of concrete by genetic programming", Expert Syst. Appl., 38(11), 14257-14268.
  18. Saridemir, M. (2014), "Effect of specimen size and shape on compressive strength of concrete containing fly ash: Application of genetic programming for design", Mater. Design, 56, 297-304. https://doi.org/10.1016/j.matdes.2013.10.073
  19. Sekhar, T.S. and Rao, P.S. (2008), "Relationship between compressive, split tensile, flexural strength of selfcompacted concrete", Int. J. Mech. Solid., 3(2), 157-168.
  20. Siddique, R. (2003), "Effect of fine aggregate replacement with Class F fly ash on the mechanical properties of concrete", Cement Concrete Res., 33(11), 539-547. https://doi.org/10.1016/S0008-8846(02)01000-1
  21. Siddique, R. (2004), "Performance characteristics of high-volume Class F fly ash concrete", Cement Concrete Res., 34(3), 487-493. https://doi.org/10.1016/j.cemconres.2003.09.002
  22. Siddique, R. (2011), "Properties of self-compacting concrete containing Class F fly ash", Mater. Design, 32, 1501-1507. https://doi.org/10.1016/j.matdes.2010.08.043
  23. Sukumar, B., Nagamani, K. and Raghavan, R.S. (2008), "Evaluation of strength at early ages of selfcompacting concrete with high volume fly ash", Constr. Build. Mater., 22, 1394-1401. https://doi.org/10.1016/j.conbuildmat.2007.04.005
  24. Yaprak, H., Simsek, O. and Aruntas, H.Y. (2004), "Effect of fly ash and blast furnace slag on properties of superplasticizer added concrete", Beton 2004 Congress Proceedings, Istanbul, 707-715.

Cited by

  1. Empirical Modeling of Modal Damping Ratio of Impact-Damped Flexible Beams by GEP 2017, https://doi.org/10.1007/s13369-017-2715-8
  2. Improved predictive model to the cross-sectional resistance of CFT vol.31, pp.8, 2017, https://doi.org/10.1007/s12206-017-0733-9
  3. Suggesting a new testing device for determination of tensile strength of concrete vol.60, pp.6, 2016, https://doi.org/10.12989/sem.2016.60.6.939
  4. Experimental and numerical study of shear crack propagation in concrete specimens vol.20, pp.1, 2016, https://doi.org/10.12989/cac.2017.20.1.057
  5. Fiber reinforced concrete corbels: Modeling shear strength via symbolic regression vol.20, pp.1, 2016, https://doi.org/10.12989/cac.2017.20.1.065
  6. A review paper about experimental investigations on failure behaviour of non-persistent joint vol.13, pp.4, 2017, https://doi.org/10.12989/gae.2017.13.4.535
  7. A fracture mechanics simulation of the pre-holed concrete Brazilian discs vol.66, pp.3, 2016, https://doi.org/10.12989/sem.2018.66.3.343
  8. Investigation of the model scale and particle size effects on the point load index and tensile strength of concrete using particle flow code vol.66, pp.4, 2016, https://doi.org/10.12989/sem.2018.66.4.445
  9. Simulation of crack initiation and propagation in three point bending test using PFC2D vol.66, pp.4, 2016, https://doi.org/10.12989/sem.2018.66.4.453
  10. Simulation of the tensile failure behaviour of transversally bedding layers using PFC2D vol.67, pp.5, 2016, https://doi.org/10.12989/sem.2018.67.5.493
  11. Investigation of the effects of particle size and model scale on the UCS and shear strength of concrete using PFC2D vol.67, pp.5, 2016, https://doi.org/10.12989/sem.2018.67.5.505
  12. The effect of ball size on the hollow center cracked disc (HCCD) in Brazilian test vol.22, pp.4, 2016, https://doi.org/10.12989/cac.2018.22.4.373
  13. PFC3D simulation of the effect of particle size on the single edge-notched rectangle bar in bending test vol.68, pp.4, 2016, https://doi.org/10.12989/sem.2018.68.4.497
  14. Numerical simulation of the effect of bedding layer geometrical properties on the punch shear test using PFC3D vol.68, pp.4, 2016, https://doi.org/10.12989/sem.2018.68.4.507
  15. Numerical simulation of the effect of bedding layer geometrical properties on the shear failure mechanism using PFC3D vol.22, pp.5, 2016, https://doi.org/10.12989/sss.2018.22.5.611
  16. Effect of transversely bedding layer on the biaxial failure mechanism of brittle materials vol.69, pp.1, 2016, https://doi.org/10.12989/sem.2019.69.1.011
  17. Numerical simulation of the effect of bedding layer on the tensile failure mechanism of rock using PFC2D vol.69, pp.1, 2019, https://doi.org/10.12989/sem.2019.69.1.043
  18. Investigation of shear behavior of soil-concrete interface vol.23, pp.1, 2016, https://doi.org/10.12989/sss.2019.23.1.081
  19. Effect of ground granulated blast furnace slag on time-dependent tensile strength of concrete vol.23, pp.2, 2016, https://doi.org/10.12989/cac.2019.23.2.133
  20. Numerical simulations of fracture shear test in anisotropy rocks with bedding layers vol.7, pp.4, 2016, https://doi.org/10.12989/acc.2019.7.4.241
  21. Prediction of the compressive strength of fly ash geopolymer concrete using gene expression programming vol.24, pp.4, 2019, https://doi.org/10.12989/cac.2019.24.4.295
  22. Experimental investigating the properties of fiber reinforced concrete by combining different fibers vol.25, pp.6, 2020, https://doi.org/10.12989/cac.2020.25.6.509
  23. Estimating the compressive strength of HPFRC containing metallic fibers using statistical methods and ANNs vol.10, pp.6, 2016, https://doi.org/10.12989/acc.2020.10.6.479
  24. Discharge coefficient estimation for rectangular side weir using GEP and GMDH methods vol.6, pp.2, 2016, https://doi.org/10.12989/acd.2021.6.2.135
  25. A new formulation for strength characteristics of steel slag aggregate concrete using an artificial intelligence-based approach vol.27, pp.4, 2016, https://doi.org/10.12989/cac.2021.27.4.333
  26. Experimental and Numerical Investigation of Uniaxial Compression Failure in Rock-Like Specimens with L-shaped Nonpersistent Cracks vol.45, pp.4, 2016, https://doi.org/10.1007/s40996-020-00386-w