DOI QR코드

DOI QR Code

Parametric Design of Contact-Free Transportation System Using The Repulsive Electrodynamic Wheels

반발식 동전기 휠을 이용한 비접촉 반송 시스템의 변수 설계

  • Jung, Kwang Suk (Department of Mechanical Engineering, Korea National University of Transportation)
  • 정광석 (한국교통대학교 기계공학과)
  • Received : 2016.02.03
  • Accepted : 2016.03.03
  • Published : 2016.03.31

Abstract

We propose a novel contact-free transportation system in which an axial electrodynamic wheel is applied as an actuator. When the electrodynamic wheel is partially overlapped by a fixed conductive plate and rotates over it, three-axis magnetic forces are generated on the wheel. Among these forces, those in the gravitational direction and the lateral direction are inherently stable. Therefore, only the force in the longitudinal direction needs to be controlled to guarantee spatial stability of the wheel. The electrodynamic wheel consists of permanent magnets that are repeated and polarized periodically along the circumferential direction. The basic geometric configuration and the pole number of the wheel influence the stability margin of a transportation system, which would include several wheels. The overlap region between the wheel and the conductive plate is a dominant factor affecting the stiffness in the lateral direction. Therefore, sensitivity analysis for the major parameters of the wheel mechanism was performed using a finite element tool. The system was manufactured based on the obtained design values, and the passive stability of a moving object with the wheels was verified experimentally.

도전성 평판에 부분적으로 걸쳐 회전하는 축형 동전기 휠을 구동원으로 이용하는 비접촉 반송 시스템을 제안한다. 회전하는 동전기 휠에는 3축력이 발생되는데 이 중 중력방향 힘과 횡방향 힘은 자기안정성을 갖고 있으므로 공간상에서 반송 시스템의 동적 안정성을 확보하기 위해서는 길이 방향 힘만을 제어하는 것으로 충분하다. 동전기 휠은 원주 방향을 따라 주기적으로 반복되는 극성을 갖는 영구자석으로 구성되어있으므로 기본 극의 기하학적 형상이나 극수 등은 안정성 여유에 큰 영향을 미친다. 또한 휠과 전도판간의 중첩된 영역 역시 횡방향으로의 강성을 결정하는 주요 인자이므로 본 논문에서는 안정성을 성능 지표로 휠을 구성하는 주요 설계 변수에 대한 민감도 해석을 수행한다. 얻어진 설계 값을 이용하여 제작된 시스템으로 휠을 포함하는 이동 개체의 수동적인 안정성을 실험적으로 검증한다.

Keywords

References

  1. J. Bird, T.A. Lipo, "Characteristics of an electrodynamic wheel using a 2-D steady-state model," IEEE Transactions on Magnetics, Vol. 43, No. 8, pp. 3395-3405, 2007. DOI: http://dx.doi.org/10.1109/TMAG.2007.900572
  2. J. H. Park, Y. S Baek, "Parametric design of the levitation mechanism for maglev planar transportation vehicle," IEEE Transactions on Magnetics, Vol. 40, No. 4, pp. 3069-3071, 2004. DOI: http://dx.doi.org/10.1109/TMAG.2004.829262
  3. K. S. Jung, "Noncontact conveyance of conductive plate using omni-directional magnet wheel," Mechatronics, Vol. 20, pp. 496-502, 2010. DOI: http://dx.doi.org/10.1016/j.mechatronics.2010.04.007
  4. K. S. Jung, "Spatial transfer of conductive plate through decoupling of two axial electrodynamic forces generated by magnet wheel," Mechatronics, Vol. 23, pp. 1044-1050, 2013. DOI: http://dx.doi.org/10.1016/j.mechatronics.2013.07.012
  5. K. S. Jung, "A novel method transferring the copper rod without contact by axial magnet wheels," International J. of Applied Electromagnetics and Mechanics, Vol. 47, pp. 187-197, 2015.
  6. K. S. Jung, "Contactless conveyance of conductive rod by rotating the radial electrodynamic wheel with a spiral structure," International J. of Applied Electromagnetics and Mechanics, Vol. 46, pp. 569-582, 2014.
  7. K. C. Kim, "Analysis on driving performance of linear induction motor for maglev system by finite element method," J. of the Korea Academia-Industrial cooperation Society, Vol. 15, No. 7, pp. 4469-4474, 2014. DOI: http://dx.doi.org/10.5762/KAIS.2014.15.7.4469
  8. K. S. Jung, K. B. Shim, S. H. Lee, “Contact-less conveyance of conductive plate by controlling permalloy sheet for magnetic shield of air-gap magnetic field from magnet wheels,” J. of Korean Society for Precision Engineering, Vol. 27, No. 7, pp. 109-116, 2010.