DOI QR코드

DOI QR Code

Hydrogen explosion effects at a containment building following a severe accident

중대사고시 수소폭발이 격납건물에 미치는 영향

  • Ryu, Myeong-Rok (Department of Mechanical Engineering, Korea Maritime and Ocean University) ;
  • Park, Kweon-Ha (Division of Mechanical Engineering, Korea Maritime and Ocean University)
  • Received : 2015.12.03
  • Accepted : 2016.03.08
  • Published : 2016.03.31

Abstract

On March 11, 2011, a massive earthquake measuring 9.0 on the Richter scale and subsequent 10-.14 m waves struck the Fukushima Daiichi (FD) Nuclear Power Plant. The main and backup electric power was damaged preventing the cooling system from functioning. Fuel rods overheated and led to hydrogen explosions. If heat in the fuel rods is not dissipated, the nuclear fuel coating material (e.g., Zircaloy) reacts with water vapor to generate hydrogen at high temperatures. This hydrogen is released into the containment area. If the released hydrogen burns, the stability of the containment area is significantly impacted. In this study, researchers performed an explosion analysis in a high-risk explosion area, analyzing the hydrogen distribution in a containment building [1] and the effects of a hydrogen explosion on containment safety. Results indicated that a hydrogen explosion was possible throughout the containment building except the middle area. If an explosion occurs at the top of the containment building with more than 40% of the hydrogen collected or in the bottom right or left side of the of containment building, safety of the containment building could be threatened.

2011년 3월 11일 리히터 스케일 9.0의 강진과 10-14m파도로 인해 Fukushima Daiichi(FD) 원자력 단지의 주전력과 보조전력이 끊어져 냉각장치가 작동하지 않았고 노심의 열이 제거되지 못해 폭발이 일어나는 사고가 발생했다. 노심의 열이 제거되지 못하면 핵연료 피복재인 지르칼로이(zircaloy)와 같은 금속이 고온 상태에서 수증기와 산화 반응하여 수소를 발생시킨다. 발생된 수소는 격납건물로 방출되는데 방출된 수소가 연소하는 경우 격납건물의 안정성에 영향을 줄 정도의 큰 충격을 유발할 수 있는 수소폭발로 이어질 수 있다. 본 연구에서는 격납건물 내부의 수소 분포를 분석한 연구 [1]에서 제시한 폭발의 위해도가 높은 영역에 대하여 폭발해석을 수행하였으며 수소 폭발이 격납건물의 건전성에 미치는 영향에 대하여 분석하였다. 격납건물 중앙부를 제외하고 수소폭발이 발생하였고 상부에 전체 수소의 40%이상이 모였을 때와 하부 좌측, 우측의 격벽사이에 수소가 모였을 때 큰 폭발이 발생했으며 격납건물 벽면에 큰 응력을 동반하였다.

Keywords

References

  1. K. Park, C. L. Khor, "Consideration on hydrogen explosion in APR 1400 containment building during small breakup loss of coolant accident," Nuclear engineering and design, vol. 293, pp. 458-467, 2015. https://doi.org/10.1016/j.nucengdes.2015.07.041
  2. T. H. Hong, T. H. Kim, and C. R. Choi, "CFD analysis on the behavior of hydrogen and steam during a severe accident in the OPR1000 containment," Proceedings of the KSME Fall Conference, p. 2223, 2011 (in Korean).
  3. J. T. Kim, S. W. Hong, S. B. Kim, and H. D. Kim, "Numerical analysis of the hydrogen-steam behavior in the APR1400 containment during a hypothetical total loss of feed water accident," Journal of the Korean Society for Computational Fluids Engineering, vol. 10, no.3, pp. 9-18, 2005 (in Korean).
  4. H. C. Kim, N. D. Suh, and J. H. Park, "Hydrogen behavior in the IRWST of APR1400 following a station blackout," International Journal of the Korean Nuclear Society, vol. 38, no. 2, pp. 195-200, 2006.
  5. K. H. Park and K. H. Bae, "Hydrogen concentration variation and examination of PAR installation reactor containment building during hydrogen release from different direction failure places," Nuclear Engineering and Design, vol. 278, pp. 229-238, 2014. https://doi.org/10.1016/j.nucengdes.2014.07.021
  6. J. Deng and X. W. Cao, "A study on evaluating a passive autocatalytic recombiner PAR-system in the PWR large-dry containment," Nuclear engineering and design, vol. 238, no. 10, pp. 2554-2560, 2008. https://doi.org/10.1016/j.nucengdes.2008.04.011
  7. J. W. Park, B. R. Koh, and K. Y. Suh, "Demonstrative testing of honeycomb passive autocatalytic recombiner for nuclear power plant," Nuclear engineering and desing, vol. 241, no. 10, pp. 4280-4288, 2011. https://doi.org/10.1016/j.nucengdes.2011.07.040
  8. K. R. Kim, S. W. Paek, H. J. Choi, and H. Chung, "Catalytic recombination of hydrogen and oxygen in air stream," Journal of industrial and engineering chemistry, vol. 7, no. 2, pp. 116-120, 2001.
  9. B. Gera, P. K. Sharma, R. K. Singh, and K. K. Vaze, "CFD analysis of passive autocatalytic recombiner interaction with atmosphere," Journal of Kerntechnik, vol. 76, no. 2, pp. 98-103, 2011. https://doi.org/10.3139/124.110119
  10. F. Morfin, J. C. Sabroux, and A. Renouprez, "Catalytic combustion of hydrogen for mitigating hydrogen risk in case of a severe accident in a nuclear power plant: study of catalysts poisoning in a representative atmosphere," Applied Catalysis B: Environmental, vol. 47, pp. 47-58, 2004. https://doi.org/10.1016/j.apcatb.2003.07.001
  11. N. Meynet, A. Bentaib, and V. Giovangigli, "Impact of oxygen starvation on operation and potential gas-phase ignition of passive auto-catalytic recombiners," Combustion and flame, vol. 161, no. 8, pp. 2192-2202, 2014. https://doi.org/10.1016/j.combustflame.2014.02.001
  12. E. Bachellerie, F. Arnould, M. Auglaire, B. de Boeck, O. Braillard, B. Exkardt, F. Ferroni, and R. Moffett, "Generic approach for designing and implementing a passive autocatalytic recombiner PAR-system in nuclear power plant containments," Nuclear engineering and design, vol. 221, no. 1, pp. 151-165, 2003. https://doi.org/10.1016/S0029-5493(02)00330-8
  13. J. Taveau, "Explosion hazards related to hydrogen releases in nuclear facilities," Journal of loss prevention in the process industries, vol. 24, no. 1, pp. 8-18, 2011. https://doi.org/10.1016/j.jlp.2010.08.002
  14. E. Kim, J. Park, J. H. Cho, and I. Moon, "Simulation of hydrogen leak and explosion for the safety design of hydrogen fueling station in Korea," International journal of hydrogen energy, vol. 38, no. 3, pp. 1737-1743, 2013. https://doi.org/10.1016/j.ijhydene.2012.08.079

Cited by

  1. Research on the Unsteady Discharge Flow of Dry Chemical Powder Tank vol.239, pp.None, 2017, https://doi.org/10.1088/1757-899x/239/1/012016
  2. 분위기 유동을 고려한 PAR 가이드 구조에 관한 연구 vol.41, pp.4, 2016, https://doi.org/10.5916/jkosme.2017.41.4.302