DOI QR코드

DOI QR Code

Regional Diversity Pattern of Spring Moths and Climatic Effects on Moth Catches

봄 출현 나방의 지역별 종 다양성 양상과 출현에 미치는 기후영향 연구

  • Noh, Dong-Ho (Department of Environmental Education, Mokpo National University) ;
  • Kim, Sung-Soo (Research Institute for East Asian Environment and Biology) ;
  • Choi, Sei-Woong (Department of Environmental Education, Mokpo National University)
  • Received : 2015.12.14
  • Accepted : 2016.01.15
  • Published : 2016.03.31

Abstract

We investigated the diversity pattern of spring moths across two regions of South Korea, Yongin city (middle part) and Muan gun (southern part) and the effects of climatic variables on moth species richness and abundance. Moths were weekly collected using UV light trap in April from 2013 to 2015. Climatic factors included growth degree day with base temperature 8 (GDD8), average temperature, precipitation, duration of sunshine, wind speed, and snow cover. The climatic effects on moth species richness and abundance were analyzed by short (0~3 weeks before collecting) and long (4~12 weeks before collecting) time periods, respectively. The diversity of spring moths showed the similar pattern of species composition at family level. However the dominant family differed depending on the region: Geometridae at middle part and Noctuidae at southern part. In addition the dominant species of Noctuidae occurred early in April and that of Geometridae moths occurred later in April. Three short-term climatic factors, GDD8, duration of sunshine, and precipitation one week before collecting were significant on moth species richness and abundance, while only one long-term climatic factor, temperature four weeks before collecting was significantly affected on moth species richness. We found that both Geometridae and Noctuidae were dominant in spring moth fauna across South Korea and they were different in the dominance and flying time in April. The occurrences of spring moths were largely affected by warmness and precipitation. The current global warming could affect the occurrence of spring moths and this should be monitored consistently.

이 연구는 한국 중부지방 용인과 남부지방 무안에서 봄 출현 나방의 다양성 양상과 나방 종 및 개체수에 영향을 주는 기후 요인을 알아보기 위해서 이루어졌다. 나방은 2013년부터 2015년까지 4월 한 달 동안 일주일 간격으로 자외선등 트랩을 이용하여 채집하였다. 기후요인은 $8^{\circ}C$를 기본으로 한 적산온도 (GDD8), 평균온도, 강우량, 일조시간, 풍속, 신적설 등이다. 나방 종 수 및 개체수에 영향을 주는 기후요인은 단기 (채집주부터 3주전까지)와 장기 (채집 4~12주전)로 나누어 분석하였다. 봄 출현 나방은 과 구성에서 유사한 양상을 띠었지만 지역별로 우점한 과는 차이를 나타내었다. 자나방과는 중부지방에서 우점한 반면 밤나방과는 남부지방에서 우점하였다. 밤나방과의 우점종은 4월 초에 나타난 반면 자나방과의 우점종은 4월 말에 나타나 시간적인 차이도 나타내었다. GDD8, 일조시간, 채집 일주일 전 강우량 등 3개의 단기 기후요인은 나방 종 수 및 개체수에 영향을 준 요인으로 나타난 반면 채집 4주전 평균기온만 장기 기후요인으로 나방 종 수에 영향을 준 것으로 나타났다. 이 연구에서는 한국에서 봄 출현 나방으로 자나방과와 밤나방과 종이 우점하며 이들은 4월 중 우점도와 비행시기에 차이가 있는 것도 알 수 있었다. 봄 출현 나방은 따뜻함과 강우량에 영향을 받는 것으로 나타났다. 최근 기후변화는 봄 출현 나방에도 영향을 줄 수 있어 이에 대한 지속적인 감시가 필요할 것으로 생각한다.

Keywords

References

  1. Aichison CW. 2001. The effect of snow cover on small animals. pp. 229-265. In Snow ecology (Jones HG, J Pomeroy, DA Walker and R Hoham eds.). Camb Univ Press, Cambridge.
  2. Altermatt F. 2012. Temperature-related shifts in butterfly phenology depend on the habitat. Glob. Chang. Biol. 18:2429-2438. https://doi.org/10.1111/j.1365-2486.2012.02727.x
  3. An JS and SW Choi. 2013. The role of winter weather in the population dynamics of spring moths in the southwest Korean peninsula. J. Asia Pac. Entomol. 16:49-53. https://doi.org/10.1016/j.aspen.2012.08.005
  4. Bale JS, GJ Masters, ID Hodkinson, C Awmack, TM Bezemer, VK Brown, J Butterfield, A Buse, JC Coulson, J Farrar, JE Good, R Harrington, S Hartley, TH Jones, RL Lindroth, MC Press, I Symrnioudis, AD Watt and JB Whittaker. 2002. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob. Chang. Biol. 8:1-16. https://doi.org/10.1046/j.1365-2486.2002.00451.x
  5. Bale JS and SAL Hayward. 2010. Insect overwintering in a changing climate. J. Exp. Biol. 213:980-994. https://doi.org/10.1242/jeb.037911
  6. Choi SW and JS An. 2008. Small-scale dynamics of moths in spring from a coniferous forest of southwestern Korea. J. Ecol. Environ. 31:83-87. https://doi.org/10.5141/JEFB.2008.31.1.083
  7. Crozier L. 2004. Warmer winters drive butterfly range expansion by increasing survivorship. Ecology 85:231-241. https://doi.org/10.1890/02-0607
  8. Forrest J and AJ Miller-Rushing. 2010. Toward a synthetic understanding of the role of phenology in ecology and evolution. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 365:3101-3112.
  9. Hammer O, DAT Harper and PD Ryan. 2001. PAST: Palaeontological statistics software package for education and data analysis. Palaeontologia Electronica 4: 9pp.
  10. Hikisz J and A Soszynska-Maj. 2015. What moths fly in winter? The assemblage of moths active in a temperate deciduous forest during the cold season in central Poland. J. Entomol. Res. Soc. 17:59.
  11. Hill JK, CD Thomas, R Fox, MG Telfer, SG Willis, J Asher and B Huntley. 2002. Responses of butterflies to twentieth century climate warming: implications for future ranges. Proc. R. Soc. Lond. B: Biol. Sci. 269:2163-2171. https://doi.org/10.1098/rspb.2002.2134
  12. Intergovernmental Panel on Climate Change (IPCC). 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
  13. Jenouvrier S and ME Visser. 2011. Climate change, phenological shifts, eco-evolutionary responses and population viability: toward a unifying predictive approach. Int. J. Biometeorol. 55:905-919. https://doi.org/10.1007/s00484-011-0458-x
  14. Korea Meteorological Administration (KMA). 2015. Annual climatological report. http://www.kma.go.kr
  15. Korea Meteorological Administration (KMA). 2009. Trend analysis of climate change in the Korean peninsula. Korea Meteorological Administration, Seoul. 20pp.
  16. Mattila N, JS Kotiaho, V Kaitala, A Komonen and J Paivinen. 2009. Interactions between ecological traits and host plant type explain distribution change in noctuid moths. Conserv. Biol. 23:703-709. https://doi.org/10.1111/j.1523-1739.2008.01138.x
  17. Mutshinda CM, RB O'Hara and IP Woiwod. 2011. A multispecies perspective on ecological impacts of climatic forcing. J. Anim. Ecol. 80:101-107. https://doi.org/10.1111/j.1365-2656.2010.01743.x
  18. Parmesan C. 1996. Climate and species' range. Nature 382:765-766. https://doi.org/10.1038/382765a0
  19. Parmesan C, N Ryrholm, C Stefanescu, JK Hill, CD Thomas, H Descimon, B Huntley, L Kaila, J Kullberg, T Tammaru, WJ Tennent, JA Thomas and M Warren. 1999. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399:579-583. https://doi.org/10.1038/21181
  20. Parmesan C. 2006. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37:637-669. https://doi.org/10.1146/annurev.ecolsys.37.091305.110100
  21. Poyry J, R Leinonen, G Soderman, M Nieminen, RK Heikkinen and TR Carter. 2011. Climate induced increase of moth multivoltinism in boreal regions. Glob. Ecol. Biogeogr. 20:289-298. https://doi.org/10.1111/j.1466-8238.2010.00597.x
  22. Roy DB and TH Sparks. 2000. Phenology of British butterflies and climate change. Glob. Chang. Biol. 6:407-416. https://doi.org/10.1046/j.1365-2486.2000.00322.x
  23. Stefanescu C, J Penuelas and I Filella. 2003. Effects of climatic change on the phenology of butterflies in the northwest Mediterranean Basin. Glob. Chang. Biol. 9:1494-1506. https://doi.org/10.1046/j.1365-2486.2003.00682.x