DOI QR코드

DOI QR Code

A Study on the Characteristics of Amorphous TiAl by P/M Processing

  • Received : 2016.01.13
  • Accepted : 2016.01.22
  • Published : 2016.03.30

Abstract

The P/M processing of titanium aluminide using amorphous TiAl is developed by which it is possible to overcome inherent fabricability problems and to obtain a fine microstructure. A high quality amorphous TiAl powder produced by reaction ball milling shows clear glass transition far below a temperature at the onset of crystallization in differential scanning calorimetry above a heating rate of 0.05 K/s. We obtained a fully dense compact of amorphous TiAl powders, encapsulated in a vacuumed can, via viscous flow by hot isostatic pressing (HIP). Isothermally annealing of HIP'ed amorphous compact under a pressure of 196 MPa shows a progressive growth of ${\gamma}-TiAl$ phase with ${\alpha}2$ ($Ti_3Al$), which is characterized by increasing sharpness of X-ray peaks with temperature. Fully dense HIP'ed compact of titanium aluminide TiAl shows a high hardness of 505 Hv, suggesting strengthening mechanisms by sub-micron sized grain of ${\gamma}-TiAl$ and particle-dispersion by second phase constituent, ${\alpha}2$.

Keywords

References

  1. T. Kawabata, T. Kanai and O. Izumi : Acta Metall., 33 (1985) 1355. https://doi.org/10.1016/0001-6160(85)90245-7
  2. W. Liang and D. Yang : Acta Metall. Sinica, 34 (1998) 597.
  3. M. Zupan and K. J. Hemker : Mater. Sci. & Eng., 319 (2001) 810.
  4. C. S. Han, J. Kor. Soc. Heat Treat., 18 (2005) 281.
  5. C. S. Han and K. W. Koo : Kor. J. Mater. Res., 18 (2008) 51. https://doi.org/10.3740/MRSK.2008.18.1.051
  6. T. Khan, P. Caron and S. Naka : High Temperature Aluminides and Intermetallics, Ed. by S. H. Whang, C. T. Liu, D. P. Pope and J. O. Stiegler, TMS, Warrendahle, (1990) 219.
  7. M. V. Nathal : Ordered Intermetallics-Physical Metallurgy and Mechanical Behaviour, Ed. by C. T. Liu, R. W. Cahn and G. Sauthoff, NATO ASI Series E, Kluwer Academic Publ., Dordrecht, 213 (1992) 541.
  8. S. H. Kim, M. C. Kim, M. H. Oh and D. M. Wee : J. Kor. Inst. Met. & Mater., 39 (2001) 731.
  9. R. T. Zheng, Y. G. Zhang, C. Q. Chen and G. A. Cheng : Mater. Sci. & Eng., A, 362 (2003) 192. https://doi.org/10.1016/S0921-5093(03)00584-7
  10. S. Romankov, W. Sha, S. D. Kaloshkin and K. Kaevitser : Surf. & Coat. Tech., 201 (2006) 3235. https://doi.org/10.1016/j.surfcoat.2006.06.044
  11. C. Suryanarayana : J. Alloys and Comp., 509 (2011) S229. https://doi.org/10.1016/j.jallcom.2010.09.063
  12. K. Fantao, Y. Hongbao and C. Yuyong : Rare Met. Mater. & Eng., 34 (2005) 446.
  13. H. Bahmanpour and S. Heshmati-Manesh : Inter. J. Mod. Phys., B, 22 (2008) 2933. https://doi.org/10.1142/S0217979208047778
  14. C. S. Han and J. Y. Nam : J. Res. Inst. Eng. & Tech., 34 (2015) 21.
  15. O. N. Senkov, M. L. Övecoglu, N. Srisukhumbowornchai and F. H. Froes : Nanostructured Mater., 10 (1998) 935. https://doi.org/10.1016/S0965-9773(98)00141-X
  16. H. Sugimoto, K. Ameyama, T. Inaba and M. Tokizane : J. Jpn. Inst. Met., 53 (1989) 628. https://doi.org/10.2320/jinstmet1952.53.6_628
  17. D. L. Zhang, H. B. Yu and Y. Y. Chen : Mater. Sci. forum, 683 (2011) 149.
  18. K. P. Rao, Y. V. Prasad and K. Suresh : Mater. & Design, 32 (2011) 4874. https://doi.org/10.1016/j.matdes.2011.06.003
  19. A. G. Adams, M. N. Rahaman and R. E. Dutton : Mater. Sci. & Eng. properties, microstructure and processing. A, 477 (2008) 137. https://doi.org/10.1016/j.msea.2007.05.006

Cited by

  1. Microstructure Change and Mechanical Properties in Binary Ti-Al Containing Ti3Al vol.26, pp.12, 2016, https://doi.org/10.3740/MRSK.2016.26.12.709
  2. Effect of Al Content on Phase Transformation of Rapidly Solidified Binary Ti-Al Alloys vol.27, pp.1, 2017, https://doi.org/10.3740/mrsk.2017.27.1.8