DOI QR코드

DOI QR Code

CO oxidation Reaction over copper metal oxide catalysts

구리복합산화물 촉매상에서 일산화탄소의 산화반응

  • Lee, Hak Beum (Department of Chemical Engineering, RCCT, Hankyong National University) ;
  • Koh, Hyoung Lim (Department of Chemical Engineering, RCCT, Hankyong National University)
  • Received : 2016.02.16
  • Accepted : 2016.03.22
  • Published : 2016.03.30

Abstract

CO oxidation was performed with Cu-Mn and Cu-Zn co-precipitated catalysts as differential precipitant, metal ratio and calcination temperature. The effects of differential metal mole ratio and calcination temperature in mixed metal oxide catalyst were investigated with CO oxidation reaction. Physiochemical properties were studied by XRD, $N_2$ sorption and SEM. 2Cu-1Mn with $Na_2CO_3$ catalyst calcined at $270^{\circ}C$ has a large surface area $43m^2/g$ and the best activity for CO oxidation. $Cu_{0.5}Mn_{2.5}O_4$ in XRD peak shows the lower activity than others. The catalytic activity over the catalyst calcined $270^{\circ}C$ displayed the highest conversion, and it was better activity comparing with Pt catalysts CO conversion.

Cu-Mn과 Cu-Zn 촉매를 침전제로 다르게 하거나, 금속의 몰비율, 소성온도를 다르게 하여 공침법으로 제조하였고 CO산화반응을 수행하여 혼합산화물 촉매에서 Cu, Mn 과 Zn의 영향 및 소성온도가 미치는 영향을 조사하였다. 촉매의 물리 화학적 특성을 알아보기 위하여 XRD, $N_2$ 흡착 및 SEM의 분석을 수행하였다. $Na_2CO_3$로 침전시켜 $270^{\circ}C$로 소성하여 제조한 2Cu-1Mn 산화물 촉매가 저온에서 CO 산화반응 활성이 가장 좋았으며 2Cu-1Mn 산화물 촉매는 $43m^2/g$으로 가장 높은 비표면적과 촉매 활성을 나타내었다. XRD로 촉매의 결정구조를 분석하였을 때 $Cu_{0.5}Mn_{2.5}O_4$의 결정구조를 갖는 촉매는 낮은 활성을 보였다. $270^{\circ}C$에서 소성한 촉매가 좋은 활성을 나타냈으며 Pt 촉매와 비교하여도 저온에서 CO산화반응이 더욱 우수함을 알 수 있었다.

Keywords

References

  1. Ardita Mele, Ilo Mele, Altin Mele, Preparation-Properties Relation of Mn-Cu Hopcalite Catalyst, Am. J. Appl. Sci., 9, 265-270 (2012). https://doi.org/10.3844/ajassp.2012.265.270
  2. Eric C. Njagi, Chun-Hu Chen, Homer Genuino, Hugo Galindo, Hui Huang, Steven L. Suib, Total oxidation of CO at ambient temperature using copper manganese oxide catalysts prepared by a redox method, Appl. Catal., B: Environmental 99, 103-10 (2010). https://doi.org/10.1016/j.apcatb.2010.06.006
  3. Eui Sik Kim, Jung-Hyun Park, Kyung-Ho Cho, Chae-Ho Shin, CO oxidation over CuO catalysts: Effect of calcination temperature, J. Ind Sci Technol. Institute, 24, No.1, 71-78 (2010).
  4. Jung-Hyun Park, Kyung Ho Cho, Yun Jung Kim, and Chae-Ho Shin,CO oxidation Over Pt Supported on Al-Ce Mixed Oxide Catalysts with Different Mole Ratios of Al/(Al+Ce), Clean Tech., 17, No.2, 166-174 (2011). https://doi.org/10.7464/KSCT.2011.17.2.166
  5. Hye-Jin Kim, Sung-Woo Choi and Chang-Seop Lee, Activity and Characteristics of Cu-Mn Oxide Catalysts Supported on ${\gamma}$Al2O3, Korean Chem. Eng. Res, 44, No.2, 193-199 (2006).
  6. Ming Li, Dong-Hui Wang, Xi-Cheng Shi, Ze-Ting Zhang, Tong-Xin Dong, Kinetics of catalytic oxidation of CO over copper-manganese oxide catalyst, Sep. Purif. Technol., 57, 147-51 (2007). https://doi.org/10.1016/j.seppur.2007.03.016
  7. Jong Soo Park, Sung chang hong and Dong Sup Doh, Activity of MeO/NMD Catalysts for CO Oxidation, Korea Chem. Eng. Res., 34, No6, 694-699 (1996).
  8. Kyong Ho Cho, Jung-Hyun Park, and Chae-Ho Shin, Low Temperature CO Oxidation over Cu-Mn Mixed Oxides, Clean Tech., 16, No.2, 132-139, (2010)
  9. Maria Wojciechowska, Wiesław Przystajko, Michal Zielin'ski, CO oxidation catalysts based on copper and manganese or cobalt oxides supported on MgF2 and Al2O3, Catal. Today 119, 338-341 (2007). https://doi.org/10.1016/j.cattod.2006.08.035
  10. Hong Chen, Xinli Tong, Yongdan Li, Mesoporous Cu-n Hopcalite catalyst and its performance in low temperature ethylene combustion in a carbon dioxide stream, Appl. Catal., A: General 370, 59-65 (2009). https://doi.org/10.1016/j.apcata.2009.09.017
  11. M. Kramer, T. Schmidt, K. Stowe, W.F. Maier, Structural and catalytic aspects of sol-gel derived copper manganese oxides as low-temperature CO oxidation catalyst, Appl. Catal., A: General, 302, 257-263, (2006). https://doi.org/10.1016/j.apcata.2006.01.018
  12. Christopher Jones, Kieran J. Cole, Stuart H. Taylor, Mandy J. Crudace, Graham J. Hutchings, Copper Manganese oxide catalysts for ambient temperature carbon monoxide oxidation: Effect of calcination on activity, J. Mol. Catal. A: Chemical, 305, 121-124, (2009) https://doi.org/10.1016/j.molcata.2008.10.027
  13. Ali A. Mirzaei, Hamid R. Shaterian, Richard W. Joyner, Michael Stockenhuber, Stuart H. Taylor, Graham J. Hutchings, Ambient temperature carbon monoxide oxidation using copper mangnese oxide catalysts: Effect of residual Na+ acting as catalyst poison, Catal. Commun., 4, 17-20, (2003). https://doi.org/10.1016/S1566-7367(02)00231-5
  14. G.J. Hutchings, A.A. Mirzaei, R.W. Joyner, M.R.H. Siddiqui, S.H. Taylor, Effect of preparation conditions on the catalytic performance of copper manganese oxide catalysts for CO oxidation, Appl. Catal., A: General 166, 143-152, (1998). https://doi.org/10.1016/S0926-860X(97)00248-2
  15. H. Hecht, "The Laser Guidebook", McGraw-Hill Book Company Press, Chpt 10 (1986).
  16. Jung-Hyun Park, Yun Jung Kim, Kyung Ho Cho, Eui Sik Kim, Chae-Ho shin, CO Oxidation Over Manganese Oxide Catalysts: Effect of Calcination Temperatures, Clean Tech., 17, 41-47, (2011).

Cited by

  1. 프로판 탈수소 반응에 미치는 금속산화물과 혼합된 Pt-Sn/Al2O3 촉매의 영향 vol.33, pp.2, 2016, https://doi.org/10.12925/jkocs.2016.33.2.401