DOI QR코드

DOI QR Code

Sepsis and Acute Respiratory Distress Syndrome: Recent Update

  • Kim, Won-Young (Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Hong, Sang-Bum (Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine)
  • Received : 2015.11.05
  • Accepted : 2015.12.10
  • Published : 2016.03.31

Abstract

Severe sepsis or septic shock is characterized by an excessive inflammatory response to infectious pathogens. Acute respiratory distress syndrome (ARDS) is a devastating complication of severe sepsis, from which patients have high mortality. Advances in treatment modalities including lung protective ventilation, prone positioning, use of neuromuscular blockade, and extracorporeal membrane oxygenation, have improved the outcome over recent decades, nevertheless, the mortality rate still remains high. Timely treatment of underlying sepsis and early identification of patients at risk of ARDS can help to decrease its development. In addition, further studies are needed regarding pathogenesis and novel therapies in order to show promising future treatments of sepsis-induced ARDS.

Keywords

References

  1. Stapleton RD, Wang BM, Hudson LD, Rubenfeld GD, Caldwell ES, Steinberg KP. Causes and timing of death in patients with ARDS. Chest 2005;128:525-32. https://doi.org/10.1378/chest.128.2.525
  2. Gajic O, Dabbagh O, Park PK, Adesanya A, Chang SY, Hou P, et al. Early identification of patients at risk of acute lung injury: evaluation of lung injury prediction score in a multicenter cohort study. Am J Respir Crit Care Med 2011;183:462-70. https://doi.org/10.1164/rccm.201004-0549OC
  3. Mikkelsen ME, Shah CV, Meyer NJ, Gaieski DF, Lyon S, Miltiades AN, et al. The epidemiology of acute respiratory distress syndrome in patients presenting to the emergency department with severe sepsis. Shock 2013;40:375-81. https://doi.org/10.1097/SHK.0b013e3182a64682
  4. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 2001;345:1368-77. https://doi.org/10.1056/NEJMoa010307
  5. Menezes SL, Bozza PT, Neto HC, Laranjeira AP, Negri EM, Capelozzi VL, et al. Pulmonary and extrapulmonary acute lung injury: inflammatory and ultrastructural analyses. J Appl Physiol (1985) 2005;98:1777-83. https://doi.org/10.1152/japplphysiol.01182.2004
  6. Calfee CS, Janz DR, Bernard GR, May AK, Kangelaris KN, Matthay MA, et al. Distinct molecular phenotypes of direct vs indirect ARDS in single-center and multicenter studies. Chest 2015;147:1539-48. https://doi.org/10.1378/chest.14-2454
  7. Meyer NJ, Li M, Feng R, Bradfield J, Gallop R, Bellamy S, et al. ANGPT2 genetic variant is associated with trauma-associated acute lung injury and altered plasma angiopoietin-2 isoform ratio. Am J Respir Crit Care Med 2011;183:1344-53. https://doi.org/10.1164/rccm.201005-0701OC
  8. Rubin DB, Wiener-Kronish JP, Murray JF, Green DR, Turner J, Luce JM, et al. Elevated von Willebrand factor antigen is an early plasma predictor of acute lung injury in nonpulmonary sepsis syndrome. J Clin Invest 1990;86:474-80. https://doi.org/10.1172/JCI114733
  9. Frat JP, Thille AW, Mercat A, Girault C, Ragot S, Perbet S, et al. High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N Engl J Med 2015;372:2185-96. https://doi.org/10.1056/NEJMoa1503326
  10. Kang BJ, Koh Y, Lim CM, Huh JW, Baek S, Han M, et al. Failure of high-flow nasal cannula therapy may delay intubation and increase mortality. Intensive Care Med 2015;41:623-32. https://doi.org/10.1007/s00134-015-3693-5
  11. Moretti M, Cilione C, Tampieri A, Fracchia C, Marchioni A, Nava S. Incidence and causes of non-invasive mechanical ventilation failure after initial success. Thorax 2000;55:819-25. https://doi.org/10.1136/thorax.55.10.819
  12. Hager DN, Krishnan JA, Hayden DL, Brower RG; ARDS Clinical Trials Network. Tidal volume reduction in patients with acute lung injury when plateau pressures are not high. Am J Respir Crit Care Med 2005;172: 1241-5. https://doi.org/10.1164/rccm.200501-048CP
  13. Oh DK, Lee MG, Choi EY, Lim J, Lee HK, Kim SC, et al. Lowtidal volume mechanical ventilation in patients with acute respiratory distress syndrome caused by pandemic influenza A/H1N1 infection. J Crit Care 2013;28:358-64. https://doi.org/10.1016/j.jcrc.2013.03.001
  14. Amato MB, Meade MO, Slutsky AS, Brochard L, Costa EL, Schoenfeld DA, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med 2015;372:747-55. https://doi.org/10.1056/NEJMsa1410639
  15. Mercat A, Richard JC, Vielle B, Jaber S, Osman D, Diehl JL, et al. Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 2008;299:646-55. https://doi.org/10.1001/jama.299.6.646
  16. Calfee CS, Delucchi K, Parsons PE, Thompson BT, Ware LB, Matthay MA, et al. Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials. Lancet Respir Med 2014;2:611-20. https://doi.org/10.1016/S2213-2600(14)70097-9
  17. O'Croinin DF, Nichol AD, Hopkins N, Boylan J, O'Brien S, O'Connor C, et al. Sustained hypercapnic acidosis during pulmonary infection increases bacterial load and worsens lung injury. Crit Care Med 2008;36:2128-35. https://doi.org/10.1097/CCM.0b013e31817d1b59
  18. Lee K, Kim MY, Yoo JW, Hong SB, Lim CM, Koh Y. Clinical meaning of early oxygenation improvement in severe acute respiratory distress syndrome under prolonged prone positioning. Korean J Intern Med 2010;25:58-65. https://doi.org/10.3904/kjim.2010.25.1.58
  19. Guerin C, Reignier J, Richard JC, Beuret P, Gacouin A, Boulain T, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med 2013;368:2159-68. https://doi.org/10.1056/NEJMoa1214103
  20. Slutsky AS, Ranieri VM. Ventilator-induced lung injury. N Engl J Med 2013;369:2126-36. https://doi.org/10.1056/NEJMra1208707
  21. Papazian L, Forel JM, Gacouin A, Penot-Ragon C, Perrin G, Loundou A, et al. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med 2010;363:1107-16. https://doi.org/10.1056/NEJMoa1005372
  22. Steingrub JS, Lagu T, Rothberg MB, Nathanson BH, Raghunathan K, Lindenauer PK. Treatment with neuromuscular blocking agents and the risk of in-hospital mortality among mechanically ventilated patients with severe sepsis. Crit Care Med 2014;42:90-6. https://doi.org/10.1097/CCM.0b013e31829eb7c9
  23. Peek GJ, Mugford M, Tiruvoipati R, Wilson A, Allen E, Thalanany MM, et al. Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial. Lancet 2009;374:1351-63. https://doi.org/10.1016/S0140-6736(09)61069-2
  24. Schmidt M, Bailey M, Sheldrake J, Hodgson C, Aubron C, Rycus PT, et al. Predicting survival after extracorporeal membrane oxygenation for severe acute respiratory failure. The Respiratory Extracorporeal Membrane Oxygenation Survival Prediction (RESP) score. Am J Respir Crit Care Med 2014;189:1374-82. https://doi.org/10.1164/rccm.201311-2023OC
  25. Combes A, Brodie D, Bartlett R, Brochard L, Brower R, Conrad S, et al. Position paper for the organization of extracorporeal membrane oxygenation programs for acute respiratory failure in adult patients. Am J Respir Crit Care Med 2014;190:488-96. https://doi.org/10.1164/rccm.201404-0630CP
  26. Cho WH, Lee K, Huh JW, Lim CM, Koh Y, Hong SB. Physiologic effect and safety of the pumpless extracorporeal interventional lung assist system in patients with acute respiratory failure: a pilot study. Artif Organs 2012;36:434-8. https://doi.org/10.1111/j.1525-1594.2011.01359.x
  27. Taylor RW, Zimmerman JL, Dellinger RP, Straube RC, Criner GJ, Davis K Jr, et al. Low-dose inhaled nitric oxide in patients with acute lung injury: a randomized controlled trial. JAMA 2004;291:1603-9. https://doi.org/10.1001/jama.291.13.1603
  28. Girard TD, Kress JP, Fuchs BD, Thomason JW, Schweickert WD, Pun BT, et al. Efficacy and safety of a paired sedation and ventilator weaning protocol for mechanically ventilated patients in intensive care (Awakening and Breathing Controlled trial): a randomised controlled trial. Lancet 2008;371:126-34. https://doi.org/10.1016/S0140-6736(08)60105-1
  29. National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network, Wiedemann HP, Wheeler AP, Bernard GR, Thompson BT, Hayden D, et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med 2006;354:2564-75. https://doi.org/10.1056/NEJMoa062200
  30. Steinberg KP, Hudson LD, Goodman RB, Hough CL, Lanken PN, Hyzy R, et al. Efficacy and safety of corticosteroids for persistent acute respiratory distress syndrome. N Engl J Med 2006;354:1671-84. https://doi.org/10.1056/NEJMoa051693
  31. Annane D, Bellissant E, Bollaert PE, Briegel J, Confalonieri M, De Gaudio R, et al. Corticosteroids in the treatment of severe sepsis and septic shock in adults: a systematic review. JAMA 2009;301:2362-75. https://doi.org/10.1001/jama.2009.815
  32. Sligl WI, Milner DA Jr, Sundar S, Mphatswe W, Majumdar SR. Safety and efficacy of corticosteroids for the treatment of septic shock: a systematic review and meta-analysis. Clin Infect Dis 2009;49:93-101. https://doi.org/10.1086/599343
  33. Looney MR, Nguyen JX, Hu Y, Van Ziffle JA, Lowell CA, Matthay MA. Platelet depletion and aspirin treatment protect mice in a two-event model of transfusion-related acute lung injury. J Clin Invest 2009;119:3450-61.
  34. O’Neal HR Jr, Koyama T, Koehler EA, Siew E, Curtis BR, Fremont RD, et al. Prehospital statin and aspirin use and the prevalence of severe sepsis and acute lung injury/acute respiratory distress syndrome. Crit Care Med 2011;39:1343-50. https://doi.org/10.1097/CCM.0b013e3182120992
  35. National Heart, Lung, and Blood Institute ARDS Clinical Trials Network, Truwit JD, Bernard GR, Steingrub J, Matthay MA, Liu KD, et al. Rosuvastatin for sepsis-associated acute respiratory distress syndrome. N Engl J Med 2014;370:2191-200. https://doi.org/10.1056/NEJMoa1401520
  36. Cruz DN, Antonelli M, Fumagalli R, Foltran F, Brienza N, Donati A, et al. Early use of polymyxin B hemoperfusion in abdominal septic shock: the EUPHAS randomized controlled trial. JAMA 2009;301:2445-52. https://doi.org/10.1001/jama.2009.856
  37. Payen DM, Guilhot J, Launey Y, Lukaszewicz AC, Kaaki M, Veber B, et al. Early use of polymyxin B hemoperfusion in patients with septic shock due to peritonitis: a multicenter randomized control trial. Intensive Care Med 2015;41:975-84. https://doi.org/10.1007/s00134-015-3751-z
  38. Krasnodembskaya A, Song Y, Fang X, Gupta N, Serikov V, Lee JW, et al. Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem Cells 2010;28:2229-38. https://doi.org/10.1002/stem.544
  39. Chang Y, Park SH, Huh JW, Lim CM, Koh Y, Hong SB. Intratracheal administration of umbilical cord blood-derived mesenchymal stem cells in a patient with acute respiratory distress syndrome. J Korean Med Sci 2014;29:438-40. https://doi.org/10.3346/jkms.2014.29.3.438

Cited by

  1. Anti-inflammatory and Anti-oxidative Effects of Dexpanthenol on Lipopolysaccharide Induced Acute Lung Injury in Mice vol.39, pp.5, 2016, https://doi.org/10.1007/s10753-016-0410-7
  2. The involvement of regulatory non-coding RNAs in sepsis: a systematic review vol.20, pp.None, 2016, https://doi.org/10.1186/s13054-016-1555-3
  3. Lung remodeling associated with recovery from acute lung injury vol.367, pp.3, 2016, https://doi.org/10.1007/s00441-016-2521-8
  4. Fibronectin (FN) cooperated with TLR2/TLR4 receptor to promote innate immune responses of macrophages via binding to integrin β1 vol.9, pp.1, 2016, https://doi.org/10.1080/21505594.2018.1528841
  5. Severe aortic regurgitation masked as sepsis-induced ARDS in a patient with Streptococcus agalactiae endocarditis vol.11, pp.1, 2016, https://doi.org/10.1136/bcr-2018-226681
  6. New Insights into the Immune Molecular Regulation of the Pathogenesis of Acute Respiratory Distress Syndrome vol.19, pp.2, 2016, https://doi.org/10.3390/ijms19020588
  7. Diosmetin Alleviates Lipopolysaccharide-Induced Acute Lung Injury through Activating the Nrf2 Pathway and Inhibiting the NLRP3 Inflammasome vol.26, pp.2, 2016, https://doi.org/10.4062/biomolther.2016.234
  8. Epidemiology of Community-Acquired Sepsis in Adult Patients: A Six Year Observational Study vol.39, pp.1, 2016, https://doi.org/10.2478/prilozi-2018-0024
  9. Function of aquaporins in sepsis: a systematic review vol.8, pp.1, 2016, https://doi.org/10.1186/s13578-018-0211-9
  10. Survival analysis of patients with sepsis in Brazil vol.52, pp.None, 2019, https://doi.org/10.1590/0037-8682-0121-2018
  11. Nrf2/Keap1/ARE Signaling Mediated an Antioxidative Protection of Human Placental Mesenchymal Stem Cells of Fetal Origin in Alveolar Epithelial Cells vol.2019, pp.None, 2016, https://doi.org/10.1155/2019/2654910
  12. Photobiomodulation modulates the resolution of inflammation during acute lung injury induced by sepsis vol.34, pp.1, 2016, https://doi.org/10.1007/s10103-018-2688-1
  13. Current Issues and Perspectives in Patients with Possible Sepsis at Emergency Departments vol.8, pp.2, 2019, https://doi.org/10.3390/antibiotics8020056
  14. Effects of ventilatory strategy on arterial oxygenation and respiratory mechanics in overweight and obese patients undergoing posterior spine surgery vol.9, pp.1, 2016, https://doi.org/10.1038/s41598-019-53194-2
  15. Decreased microRNA 103 and microRNA 107 predict increased risks of acute respiratory distress syndrome and 28-day mortality in sepsis patients vol.99, pp.25, 2016, https://doi.org/10.1097/md.0000000000020729
  16. The Long History of Vitamin C: From Prevention of the Common Cold to Potential Aid in the Treatment of COVID-19 vol.11, pp.None, 2016, https://doi.org/10.3389/fimmu.2020.574029
  17. State of the Art Review of Cell Therapy in the Treatment of Lung Disease, and the Potential for Aerosol Delivery vol.21, pp.17, 2016, https://doi.org/10.3390/ijms21176435
  18. Myeloperoxidase instigates proinflammatory responses in a cecal ligation and puncture rat model of sepsis vol.319, pp.3, 2016, https://doi.org/10.1152/ajpheart.00440.2020
  19. Prostaglandin F receptor antagonist attenuates LPS‐induced systemic inflammatory response in mice vol.34, pp.11, 2016, https://doi.org/10.1096/fj.202001481r
  20. Association between right ventricle dysfunction and poor outcome in patients with septic shock vol.106, pp.21, 2020, https://doi.org/10.1136/heartjnl-2020-316889
  21. Acute infective endocarditis masquerading as septic shock with acute respiratory distress syndrome vol.8, pp.12, 2016, https://doi.org/10.1002/ccr3.3261
  22. Long noncoding RNA NEAT 1 and its target microRNA‐125a in sepsis: Correlation with acute respiratory distress syndrome risk, biochemical indexes, disease severity, and 28‐day mortality vol.34, pp.12, 2016, https://doi.org/10.1002/jcla.23509
  23. Angelica Polysaccharide Ameliorates Sepsis-Induced Acute Lung Injury through Inhibiting NLRP3 and NF-κB Signaling Pathways in Mice vol.2021, pp.None, 2016, https://doi.org/10.1155/2021/8866143
  24. Blood platelets in the development of sepsis, septic shock and multiple organ failure syndrome vol.22, pp.6, 2021, https://doi.org/10.15789/1563-0625-bpi-2090
  25. Innate Receptor Activation Patterns Involving TLR and NLR Synergisms in COVID-19, ALI/ARDS and Sepsis Cytokine Storms: A Review and Model Making Novel Predictions and Therapeutic Suggestions vol.22, pp.4, 2016, https://doi.org/10.3390/ijms22042108
  26. Low level of Vitamin C and dysregulation of Vitamin C transporter might be involved in the severity of COVID-19 Infection vol.12, pp.1, 2021, https://doi.org/10.14336/ad.2020.0918
  27. An evaluation of sepsis in dentistry vol.230, pp.6, 2016, https://doi.org/10.1038/s41415-021-2724-6
  28. Computational Mutagenesis at the SARS-CoV-2 Spike Protein/Angiotensin-Converting Enzyme 2 Binding Interface: Comparison with Experimental Evidence vol.15, pp.4, 2016, https://doi.org/10.1021/acsnano.0c10833
  29. An evaluation of sepsis in dentistry vol.8, pp.7, 2016, https://doi.org/10.1038/s41407-021-0678-9
  30. Molecular mechanisms in septic shock (Review) vol.22, pp.4, 2016, https://doi.org/10.3892/etm.2021.10595
  31. miR‐942‐5p prevents sepsis‐induced acute lung injury via targeting TRIM37 vol.102, pp.4, 2016, https://doi.org/10.1111/iep.12413
  32. Platelet Inhibition Prevents NLRP3 Inflammasome Activation and Sepsis-Induced Kidney Injury vol.22, pp.19, 2016, https://doi.org/10.3390/ijms221910330
  33. The critical role of mesenchymal stromal/stem cell therapy in COVID‐19 patients: An updated review vol.39, pp.8, 2016, https://doi.org/10.1002/cbf.3670