DOI QR코드

DOI QR Code

Analysis of Sputter-Deposited SnO thin Film with SnO/Sn Composite Target

SnO/Sn 혼합 타겟을 이용한 SnO 박막 제조 및 특성

  • Kim, Cheol (Graduate School of NID Fusion Technology, Seoul National University of Science and Technology) ;
  • Kim, Sungdong (Department of Mechanical System Design Engineering, Seoul National University of Science and Technology) ;
  • Kim, Sarah Eunkyung (Graduate School of NID Fusion Technology, Seoul National University of Science and Technology)
  • 김철 (서울과학기술대학교 NID융합기술대학원) ;
  • 김성동 (서울과학기술대학교 기계시스템디자인공학과) ;
  • 김은경 (서울과학기술대학교 NID융합기술대학원)
  • Received : 2016.01.28
  • Accepted : 2016.03.18
  • Published : 2016.04.27

Abstract

Tin oxides have been studied for various applications such as gas detecting materials, transparent electrodes, transparent devices, and solar cells. p-type SnO is a promising transparent oxide semiconductor because of its high optical transparency and excellent electrical properties. In this study, we fabricated p-type SnO thin film using rf magnetron sputtering with an SnO/Sn composite target; we examined the effects of various oxygen flow rates on the SnO thin films. We fundamentally investigated the structural, optical, and electrical properties of the p-type SnO thin films utilizing X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV/Vis spectrometry, and Hall Effect measurement. A p-type SnO thin film of $P_{O2}=3%$ was obtained with > 80% transmittance, carrier concentration of $1.12{\times}10^{18}cm^{-3}$, and mobility of $1.18cm^2V^{-1}s^{-1}$. With increasing of the oxygen partial pressure, electrical conductivity transition from p-type to n-type was observed in the SnO crystal structure.

Keywords

References

  1. H. Hosono, N. Kikuchi, N. Ueda and H. Kawazoe, J. Non-Cryst. Solids, 198-200, 165 (1996). https://doi.org/10.1016/0022-3093(96)80019-6
  2. E. Leja, J. Korecki, K. Krop and K. Toll, Thin Solid Films, 59, 147 (1979). https://doi.org/10.1016/0040-6090(79)90288-8
  3. M. Batzill and U. Diebold, Prog. Surf. Sci., 79, 47 (2005). https://doi.org/10.1016/j.progsurf.2005.09.002
  4. B. G. Lewis and D.C. Paine, MRS Bull., 25, 22 (2000).
  5. V. Demarne and A. Grisel, Sens. Actuators, A, 13, 301 (1988). https://doi.org/10.1016/0250-6874(88)80043-X
  6. Y. Ogo, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano and H. Hosono, Appl. Phys. Lett., 93, 032113:1 (2008). https://doi.org/10.1063/1.2964197
  7. P. C. Hsu, C. J. Hsu, C. H. Chang, S. P. Tsai, W. C. Chen, H. H. Hsieh and C. C. Wu, ACS Appl. Mater. Interfaces, 6, 13724 (2014). https://doi.org/10.1021/am5031787
  8. H. Hosono, J. Non-Cryst. Solids, 352, 851 (2006). https://doi.org/10.1016/j.jnoncrysol.2006.01.073
  9. Z. Ji, Z. He, Y. Song, K. Liu and Z. Ye, J. Cryst. Growth, 259, 282 (2005).
  10. J. Ni, X. Zhao, X. Zheng, J. Zhao and B. Liu, Acta Mater., 58, 278 (2009).
  11. J. Zhao, X. J. Zhao, J. M. Ni, H. Z. Tao, Acta Mater., 58, 6243 (2010). https://doi.org/10.1016/j.actamat.2010.07.042
  12. X. Q. Pan and L. Fu, J. Appl. Phys., 58, 6048 (2001).
  13. L. Y. Liang, Z. M. Liu, H. T. Cao, Y. Y. Shi, X. L. Sun, Z. Yu, A. H. Chen, H. Z. Zhang and Y. Q. Fang, ACS Appl. Mater. Interfaces, 2, 1565 (2010). https://doi.org/10.1021/am100236s
  14. Y. R. Kim and S. E. Kim, J. Kor. Ceram. Soc., 49, 448 (2012). https://doi.org/10.4191/kcers.2012.49.5.448
  15. Y. R. Kim, S. P. Kim, S. D. Kim and S. E. Kim, Kor. J. Mater. Res., 20, 42 (2010). https://doi.org/10.3740/MRSK.2010.20.1.042
  16. H. D. Kim, J. S. Choi and D. W. Shin, J. Kor. Ceram. Soc., 39, 386 (2002). https://doi.org/10.4191/KCERS.2002.39.4.386
  17. S. P. Kim, S. D. Kim and S. E. Kim, J. Kor. Ceram. Soc., 48, 316 (2011). https://doi.org/10.4191/KCERS.2011.48.4.316
  18. H. Hosono, Y. Ogo, H. Yanagi and T. Kamiya, Electrochem. Solid-State Lett., 14, H13 (2011). https://doi.org/10.1149/1.3505288
  19. J. Szuber, G. Czempik, R. Larciprete, D. Koziej and B. Adamowicz, Thin Solid Films, 391, 198 (2001). https://doi.org/10.1016/S0040-6090(01)00982-8
  20. Y. H. Jiang, I. C. Chiu, P. K. Kao, J. C. He, Y. H. Wu, Y. J. Yang, C. C. Hsu, I. C. Cheng and J. Z. Chen, Appl. Surf. Sci., 327, 358 (2015). https://doi.org/10.1016/j.apsusc.2014.11.115
  21. T. Yang, J. Zhao, X. Li, X. Gao, C. Xue, Y. Wu and R. Tai, Mater. Lett., 139, 39 (2015). https://doi.org/10.1016/j.matlet.2014.10.040
  22. M. Liao, Z. Xiao, F. Y. Ran, H. Kumomi, T. Kamiya and H. Hosono, ECS J. Solid State Sci. Technol., 4, Q26 (2014).
  23. H. Yabuta, N. Kaji, R. Hayashi, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano and H. Hosono, Appl. Phys. Lett., 97, 072111 (2010). https://doi.org/10.1063/1.3478213
  24. W. Guo, L. Fu, Y. Zhang, K. Zhang, L. Y. Liang, Z. M. Liu, H. T. Cao and X. Q. Pan, Appl. Phys. Lett., 96, 042113:1 (2010).
  25. O. Stenzel, The physics of Thin Film Optical Sepctra: An Introduction, p.214, Springer (2005).