DOI QR코드

DOI QR Code

Characteristics of the Copper Mineralization in Tsogttsetsii Area, Mongolia

몽골 촉트체치 지역의 동 광화작용 특성

  • Davaasuren, Otgon-Erdene (Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Lee, Bum Han (Convergence Research Center for Development of Mineral Resources (DMR), Korea Institute of Geoscience and Mineral Resources) ;
  • Kim, In Joon (Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Ryoo, Chung-Ryul (Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Heo, Chul-Ho (Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources)
  • Received : 2016.03.08
  • Accepted : 2016.03.28
  • Published : 2016.03.31

Abstract

Tsogttsetsii area, an intrusive complex associated with Cu porphyry mineralization, is located in the Gurvansaikhan island arc terrane of the Central Asian Orogenic belt, Southern Mongolia. We performed a reconnaissance survey in Tsogttsetsii area. Cu mineralization in Tsogttsetsii area is porphyry Cu type related with alkali granite intruded in Permian. Mineralogical and textural properties of the ores and associated minerals were analyzed using X-ray diffraction, thin section petrography, and Scanning electron microscopy-Energy dispersive spectroscopy (SEM-EDS). Ore minerals identified in polarizing microscope are magnetite, pyrite and bornite. Propylitic alteration zone occurs broadly in the area where malachite occurrences are shown to be spread intensively in alkali granite area. Quartz, sericite, chlorite and epidote were observed in the alteration zone samples. As results of XRD and SEM-EDS analysis, samples of copper oxides were composed mainly of malachite, cuprite and small amounts of quartz. Average and maximum Cu contents of samples collected from malachite occurrences area are 759 ppm and 6190 ppm, respectively. The characteristics of mineralization in Tsogttsetsii area is similar to Oyu Tolgoi Cu-Au (Mo) deposit and Tsagaan Suvarga Cu-Mo deposit which are 56 km south and 120 km northeast from Tsogttsetsii area, respectively. Characteristics of the study area, such as the geology, tectonic environment, lithology, mineralization, and alterations of the rocks within the survey area, resemble the characteristics of other porphyry deposits. Therefore further exploration including Induced Polarization (IP) survey for identifying subsurface orebody is required.

반암동 광화작용이 수반된 관입암체로 이루어진 촉트체치 지역은 몽골 남부 중앙아시아 조산대의 구르반사이한 호상열도 지형에 위치한다. 이러한 촉트체치 지역에서 예비조사를 수행하였다. 촉트체치 지역의 동 광화작용은 페름기에 관입한 알칼리 화강암과 관련된 반암동 광상이다. 공작석이 산출되는 알칼리 화강암 지역에서 프로필리틱 변질대가 넓게 분포한다. 편광현미경에서 확인된 광석광물은 자철석, 황철석, 반동석이다. 프로필리틱 변질대 시료에서는 석영, 견운모, 녹니석, 녹렴석 등이 관찰되었다. XRD와 SEM-EDS 분석 결과 동 광물은 주로 공작석과 적동석으로 이루어진다. 공작석 산출지에서 채취한 시료의 평균 동 함량은 759 ppm이고 최대 동 함량은 6190 ppm이다. 촉트체치 지역의 광화작용 특성은 촉트체치 지역으로부터 남쪽으로 56 km 떨어진 오유 톨고이 동-금(-몰리브덴) 광상 및 북동쪽으로 120 km 떨어진 차간 수바르가 동-몰리브덴 광상과 유사하다. 조사지역의 지질, 지구조 환경, 암상, 광물, 변질 등이 다른 반암동 광상과 유사한 특성을 갖는다. 따라서 촉트체치 동 광화 지역에 대해 지하 광체 확인을 위한 IP 탐사를 포함한 추가 광물자원 탐사가 필요하다.

Keywords

References

  1. Badarch, G., Gunningham, W.D., and Windley, B.F. (2002) A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of Central Asia. Journal of Asian Earth Science, 21, 87-110. https://doi.org/10.1016/S1367-9120(02)00017-2
  2. Batchelor, R.A. and Bowden, P. (1985) Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chemical Geology, 48, 43-55. https://doi.org/10.1016/0009-2541(85)90034-8
  3. Chen, B., Jahn, B.M., and Tian, W. (2009) Evolution of the Solonker suture zone: constraints from zircon U-Pb ages, Hf isotopic ratios and whole-rock Nd-Sr isotope compositions of subduction and collision-related magmas and forearc sediments. Journal of Asian Earth Sciences, 34, 245-257. https://doi.org/10.1016/j.jseaes.2008.05.007
  4. Dejidmaa, G. (2005). Mineral resources and Metallogenic belts in Southern Mongolia. In: Seltmann, R., Gerel, O., Kirwin, D. (eds). Geodynamics and metallogeny of Mongolia, with special emphasis on copper and gold deposits. CERCAMS, London, 221pp.
  5. De La Roche, H., Leterrier, J., Grand Claude, P., and Marchal, M. (1980) A classification of volcanic and plutonic rocks using R1-R2 diagrams and major element analyses-its relationship with current nomenclature. Chemical Geology, 29, 183-210. https://doi.org/10.1016/0009-2541(80)90020-0
  6. Durante, M.V. and Zonenshein, P. (1976) Upper Paleozoic sediments and magmatism of Khan-Bogd area in South Mongolia. Bulletin of the Moscow Society of Naturalists Geological Series, 51, Moscow (in Russian).
  7. Goldenberg, V.I. and Sanjaadorj, D. (1978) Geological mapping scale 1 : 200000 on territory of Omnogovi, Dundgovi and Dornogovi aimaks. Ulaanbaatar, Ministry of Geology of Mongolia, open file Report No. 2724 (in Russian).
  8. Jamiyandorj, O. and Zoljargal, A. (2010) Geological map of Mongolia, Ikh luusiin uul sheet K-48-V (1 : 200,000 scale). Mineral Resources Authority of Mongolia (in Mongolian).
  9. Korea Institute of Geoscience and Mineral Resources (KIGAM) (2015) Exploration and Potential Evaluation of Overseas/North Korea/Arctic circle Mineral Resources. Ministry of Science, ICT & Future Planning, GP2015-033-2015(1) (in Korean).
  10. Lamb, M.A. and Badarch, G. (1997) Paleozoic sedimentary basins and volcanic-arc systems of southern Mongolia; newstratigraphic and sedimentologic constraints. In: Hendrix, M.S. and Davis, G.A. (eds), Palaeozoic and Mesozoic tectonic evolution of central Asia: from continental assembly to intracontinental deformation. Bellwether Publishing for the Geological Society of America, Columbia, 194, 107-141.
  11. Lamb, M.A. and Badarch, G. (2001) Paleozoic sedimentary basins and volcanic arc systems of southern Mongolia; newgeochemical and petrographic constraints. In: Hendrix, M.S. and Davis, G.A. (eds), Geological Society of America, 117-149.
  12. Lee, B.H., Park, G.S., Kim, I.J., Lee, G., Heo, C.H., and Koh, S.-M. (2012) Characteristics of Fe-Mn Mineralization in Ugii Nuur and Tamir Gol, Mongolia. Journal of the Mineralogical Society of Korea, 25, 313-322 (in Korean with English abstract). https://doi.org/10.9727/jmsk.2012.25.4.313
  13. Lee, B.H., Park, G.S., Kim, I.J., and Heo, C.H. (2015) Resource Estimation of Ugii Nuur Fe-Mn Occurrence Area, Mongolia. Journal of the Mineralogical Society of Korea, 28, 1-7 (in Korean with English abstract). https://doi.org/10.9727/jmsk.2015.28.1.1
  14. Middlemost, E.A.K. (1985) Magmas and Magmatic rocks: An Introduction to Igneous Petrology. Longman, London, 226pp.
  15. Peccerillo, A. and Taylor, S.R. (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58, 63-81. https://doi.org/10.1007/BF00384745
  16. Shand, S.J. (1943) The Eruptive Rocks: Their Genesis, Composition, Classification, and Their Relation to Ore-Deposits with a Chapter on Meteorite. John Wiley and Sons, New York, 444p.
  17. Seltmann, R., Porter, T.M., and Pirajno, F. (2014) Geodynamics and metallogeny of the central Eurasian porphyry and related epithermal mineral systems: A review. Journal of Asian Earth Sciences, 79, 810-841. https://doi.org/10.1016/j.jseaes.2013.03.030
  18. Sengor, A.M.C. and Natal'in, B.A. (1996) Palaeotectonics of Asia: fragments of a synthesis. In: Yin, A., and Harrison M. (eds.), The Tectonic Evolution of Asia. Cambridge University Press, Cambridge, 486-640.
  19. Suetenko, O.D. (1973) Structure of Hercynian geosynclinal basin of southeastern Mongolia. Geotectonics, 3, 167-182 (in Russian).
  20. Sung-Chiao, C. (1984) The sandy deserts and the gobi of China. In: El-Baz, F. (eds). Deserts and arid lands. The Netherlands, Martinus Nijhoff Publishers, 95-112.
  21. Tumurtogoo, O., Badarch, G., Orolmaa, D., and Byamba, J. (2000) Lithotectonic terranes and crustal evolution in Mongolia. In: Badarch, G., Jahn, B.M. (eds.), IGCP-420, Continental growth in Phanerozoic: Evidence from Central Asia (Abstracts and Excursion Guidebook). Geosciences, Rennes, 2, 71-76.
  22. Wang, Q. and Liu, X. (1986) Paleoplate tectonics between Cathaysia and Angaraland in Inner Mongolia. Tectonics, 5, 1073-1088. https://doi.org/10.1029/TC005i007p01073
  23. Windley, B.F., Alexeiev, D., Xiao, W., Kroner, A., and Badarch, G. (2007) Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164, 31-47. https://doi.org/10.1144/0016-76492006-022
  24. Xiao, W., Windley, B.F., Hao, J., and Zhai, M. (2003) Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: termination of the central Asian orogenic belt. Tectonics, 22, 1069.
  25. Yoo, B.C. and Koh, S.-M. (2011) Rare Earth Elements Resources and Mushgai Khudag Deposit in Mongolia. Journal of the Mineralogical Society of Korea, 24, 55-62. (in Korean with English abstract). https://doi.org/10.9727/jmsk.2011.24.1.055
  26. Zorin, Y.A., Belichenko, V.G., Turutanov, E.K., Kozhevnikov, V.M., Ruzhentsev, S.V., Dergunov, A.B., Filippova, I.B., Tomurtogoo, O., Arvisbaatar, N., Bayasgalan, T., Byambaa, C., and Khosbayar, P. (1993) The South Siberia-central Mongolia transpect. Tectonophysics, 225, 361-378. https://doi.org/10.1016/0040-1951(93)90305-4

Cited by

  1. 몽골 촉트체치 지역 동 산출지 예비조사결과 vol.50, pp.4, 2016, https://doi.org/10.9719/eeg.2017.50.4.313