Toxicity and safety classification of 4 animal medicines - Focusing on venoms from bee, snake, blister beetle and scolopendrid -

일부 동물성 한약재의 독성과 안전성등급화 - 봉독, 사독, 반묘와 오공을 중심으로 -

  • Park, Yeongchul (GLP Center, Catholic University of Daegu) ;
  • Lee, Sundong (Dept. of Preventive Korean Medicine, School of Korean Medicine, Sangji University)
  • 박영철 (대구가톨릭대학교 GLP센터) ;
  • 이선동 (상지대학교 한의과대학 예방의학교실)
  • Received : 2016.03.23
  • Accepted : 2016.04.22
  • Published : 2016.04.30

Abstract

Objectives : About 13% of the medicines used by traditional korean medicines(TKM), are called animal medicines and are derived from non-herbal sources such as animals and insects. However, the clinical use of these preparations from animal medicines is often based on tradition and belief, rather than on evidence of toxicity and efficacy. As a result, animal medicines containing toxin have caused serious problems from injecting patients with venom. Here, various venoms frequently used as TKM were reviewed in terms of their instinct toxity and tried to estimate their safety classification. Methods : The estimation of safety classification was based on human equivalent dose(HED)-based MOS (margin of safety) and clinical dose applied for patients. Results and Conclusions : Except that of snake venom due to no clinical dose, they were evaluated as class 3 for bee venom, class 4 for cantharidin, toxin from blister beetle, and class 1 for venom from scolopendrid. In conclusion, animal medicines showed a wide range of safety classification from class 1 to class 4. This wide range is estimated to result from extremely limited applications of each venom for patients because of their strong toxicity. However, it should be cautious for application in clinics since animal medicines can produce anaphylactic reactions particularly after veinous administration even with a tiny amount of venom.

Keywords

References

  1. 이선동, 박영철. 한약독성학 I. 한국학술정보(주) 2012:16-22. ISBN 978-89-268-3190-8.
  2. Still J. Use of animal products in traditional Chinese medicine: environmental impact and health hazards. Complementary Therapies in Medicine. 2003;11:118-122. https://doi.org/10.1016/S0965-2299(03)00055-4
  3. 서부일, 최호영. 임상한방본초학. 도서출판 영림사, 2004.
  4. 박영철. 독성학의 분자-생화학적 원리, 한국학술정보(주), 2010;30-31. ISBN 978-89-268-1259-4.
  5. 박영철. 이선동. 한약의 안전성 등급화를 위한 evidence-based approach: Human equivalent dose-based the margin of safety. 대한예방한의학회지. 2013:17(3):1-12.
  6. 박영철, 이선동. 한약의 안전성 등급화를 통한 근거중심실용의학적 연구(1). J Korean Med. 2014; 35(1):114-123. https://doi.org/10.13048/jkm.14011
  7. 박영철, 이선동. 독성대사체를 생성하는 다빈도사용 한약재의 안전성등급화; 천궁, 당귀, 감초, 숙지황을 중심으로. 대한예방한의학회지. 20151;9(2):23-133.
  8. 이용석, 이영준, 한창현. 봉독을 이용한 무작위배정 임상연구의 국내 현황. Journal of Korean Medicine Rehabilitation. 2013;23(3):87-106.
  9. Shipolini RA. "Biochemistry of bee venom". In: Handbook of natural toxins, Vol. 2, AT. Tn, (ed.), Marcel Dekker, New York. 1984; 49-85.
  10. Sherman RA. Encyclopedia of Insects (Second Edition) Chapter 163 -Medicine, Insects in. 2009;618-620.
  11. Mahmoud Abdu Al-Samie, Mohamed Ali. Studies on Bee Venom and Its Medical Uses. International Journal of Advancements in Research & Technology. 2012;1(2):1-15.
  12. Dotimas EM and Hider RC. Honeybee venom. Bee World. 1987;68(2):51-70. https://doi.org/10.1080/0005772X.1987.11098915
  13. Roeder T. Octopamine in invertebrates. Prog. Neurobiol. 1999;59:533-561. https://doi.org/10.1016/S0301-0082(99)00016-7
  14. Jiangtao Dong, Bihua Ying, Shaokang Huang, Shuangqin Ma, Peng Long, Xijuan Tu, Wenchao Yang, Zhenhong Wu, Wenbin Chen, Xiaoqing Miao. High-performance liquid chromatography combined with intrinsic fluorescence detection to analyse melittin in individual honeybee (Apis mellifera) venom sac. Journal of Chromatography B 1002. 2015; 139-143. https://doi.org/10.1016/j.jchromb.2015.08.014
  15. Terwilliger TC, Weissman L, Eisenberg D. The structure of melittin in the form I crystals and its implication for melittin's lytic and surface activities. Biophys. J. 1982; 37:353-361. https://doi.org/10.1016/S0006-3495(82)84683-3
  16. Gajski G. Vera Garaj-Vrhovac. Melittin: A lytic peptide with anticancer properties Environ Toxicol Pharmacol. 2013;36(2):697-705. https://doi.org/10.1016/j.etap.2013.06.009
  17. Son DJ, Lee JW, Lee YH, Song HS, Lee CK, Hong JT. Therapeutic application of antiarthritis, pain-releasing, and anti-cancer effects of bee venom and its constituent compounds. Pharmacol. Ther. 2007;115:246-270. https://doi.org/10.1016/j.pharmthera.2007.04.004
  18. Hao J, Liu MG, Yu YQ, Cao FL, Li Z, Lu ZM, Chen, J. Roles of peripheral mitogenactivated protein kinases in melittin-induced nociception and hyperalgesia. Neuroscience. 2008;152:1067-1075. https://doi.org/10.1016/j.neuroscience.2007.12.038
  19. Tessier DC, Thomas DY, Khouri HE, Laliberie F, Vernet T. Ehanced secretion from insect cells of a foreign protein fused to the honeybee melittinsignal peptide. Gene. 1991; 98(2):177-183. https://doi.org/10.1016/0378-1119(91)90171-7
  20. Clapp LE, Klette KL, DeCoster MA, Bernton E, Petras JM, Dave JR, Laskosky MS, Smallridge RC, Tortella FC. Phospholipase A2-induced neurotoxicity in vitro and in vivo in rats. Brain Res. 1995;693:101-111. https://doi.org/10.1016/0006-8993(95)00720-B
  21. Barker SA, Bayyuk SI, Brimacombe JS, Palmer DJ. Characterization of the products of the action of bee venom hyaluronidase. Nature. 1963;199:693-694. https://doi.org/10.1038/199693a0
  22. Hider RC, Ragnarsson U. A proposal for the structure of apamin. FEBS Lett. 1990;111: 189-193.
  23. Zhang L, Krnjevic K. Apamin depresses selectively the after-hyperpolarization of cat spinal motoneurons. Neuroscience Letters. 1987;74(1):58-62. https://doi.org/10.1016/0304-3940(87)90051-6
  24. Hugues M, Romey G, Duval D, Vincent JP, Lazdunski M. Apamin as a selective blocker of the calcium-dependent potassium channel in neuroblastoma cells: voltage-clamp and biochemical characterization of the toxin receptor. Proc. Natl. Acad. Sci. U.S.A. 1982; 79:1308-1312. https://doi.org/10.1073/pnas.79.4.1308
  25. Banks BE, Dempsey CE, Vernon CA, Warner JA, Yamey J, Anti-inflammatory activity of bee venom peptide 401 (mast cell degranulating peptide) and compound 48/80 results from mast cell degranulation in vivo. Br. J. Pharmacol. 1990;99:350-354. https://doi.org/10.1111/j.1476-5381.1990.tb14707.x
  26. Kondo T, Ikenaka K, Fujimoto I, Aimoto S, Kato H, Ito K, Taguchi T, Morita T, Kasai M, Mikoshiba K. K+ channel involvement in induction of synaptic enhancement by mast cell degranulating (MCD) peptide. Neurosci. Res. 1992;13:207-216. https://doi.org/10.1016/0168-0102(92)90060-P
  27. Bidard JN, Mourre C, Gandolfo G, Schweitz H, Widmann C, Gottesmann C, Lazdunski M. Analogies and differences in the mode of action and properties of binding sites (localization and mutual interactions) of two K+ channel toxins. MCD peptide and dendrotoxin I. Brain Res. 1989;495:45-57. https://doi.org/10.1016/0006-8993(89)91216-X
  28. Shkenderov S, Koburova K, Adolapin: a newly isolated analgetic and antiinflammatory polypeptide from bee venom. Toxicon. 1982; 20:317-321. https://doi.org/10.1016/0041-0101(82)90234-3
  29. Koburova KL, Michailova SG, Shkenderov SV. Further investigation on the antiinflammatory properties of adolapin-bee venom polypeptide. Acta Physiol. Pharmacol. Bulg. 1985;11:50-55.
  30. Kwon YB, Lee JH, Han HJ, Mar WC, Kang SK, Yoon OB, Beitz AJ, Lee JH. The watersoluble fraction of bee venom produces antinociceptive and anti-inflammatory effects on rheumatoid arthritis in rats. Life Science. 2002;71:191-204. https://doi.org/10.1016/S0024-3205(02)01617-X
  31. Sharma HC and Singh OP. Medicinal properties of some lesser known but important bee products. Proc. 2nd Int. Conf. Apiculture in Trop. Climates. IBRA, New Delhi. 1983;694-702.
  32. Krell R. Value-added products from beekeeping. SAO Agricultural Services Bulletin. Food and Agriculture Organization of the United Nation. Rome. 1996.
  33. Mandal MD, Mandal S. Honey: its medicinal property and antibacterial activity. Asian Pacific Journal of Tropical Biomedicine. 2011; 1(2):154-160. https://doi.org/10.1016/S2221-1691(11)60016-6
  34. Hoffman DR. Honey bee venom allergy: immunological studies of systemic and large local reactions. Ann. Allergy. 1978;41:278-282.
  35. Smallheer BA. Bee and Wasp Stings : Reactions and Anaphylaxis. Critical Care Nursing Clinics of North America. 2013;25(2):151-164. https://doi.org/10.1016/j.ccell.2013.02.002
  36. Schmidt JO, Allergy to venomous insects (In. The Hive and the Honey Bee, Edited by Graham JM) Hamilton, Illinois. 1999.
  37. Simons FE. Anaphylaxis. J Allergy Clin Immunol. 2010;125(2 Suppl 2):S161-181. https://doi.org/10.1016/j.jaci.2009.12.981
  38. Simons FE, Frew AJ, Ansotegui IJ, Bochner BS, Golden DB, Finkelman FD, Leung DY, Lotvall J, Marone G, Metcalfe DD, Muller U, Rosenwasser LJ, Sampson HA, Schwartz LB, van Hage M, Walls AF. Practical allergy (PRACTALL) report: risk assessment in anaphylaxis. Allergy. 2008;63:35-37.
  39. Chen CY, Chen WX, Sun X. Comparison of anti-inflammatory, analgesic activities, anaphylactogenicity and acute toxicity between bee venom and its peptides. Zhongguo Zhong Xi Yi Jie He Za Zhi. 1993;13:226-227.
  40. The European Academy of Allergy and Clinical Immunology (EAACI). Allergy definition. Available at http://www.eaaci.org/patients/allergic-and-immunologic-diseases-and-causes/what-is-an-allergy.html
  41. Phyllis AB and James AB. Prescription for Nutritional Healing (Third Edition). Typesetter: Jary A. Rosenberg. AVERY, a member of PUTMAN INC. New York, 2000.
  42. Golden D. Anaphylaxis to Insect Stings. Immunology and Allergy Clinics of North America. 2015;35(2):287-302. https://doi.org/10.1016/j.iac.2015.01.007
  43. Tyson C. Brown, MD, Michael S. Tankersley, MD. The sting of the honeybee: an allergic perspective. Ann Allergy Asthma Immunol. 2011;107:463-471 https://doi.org/10.1016/j.anai.2011.09.015
  44. Manivannan V, Hyde RJ, Hankins DG, Bellolio MF, Fedko MG, Decker WW, Campbell RL, Epinephrine use and outcomes in anaphylaxis patients transported by emergency medical services. American Journal of Emergency Medicine. 2014;32:1097-1102. https://doi.org/10.1016/j.ajem.2014.05.014
  45. Rose A. Bees in balance. Starboint Enterprises Ltd. Bethesda, Maryland. 1994.
  46. Cuende E, Fraguas J, Pena JE, Pena F, Garcia JC, Gonzalez M. Beekeeper' arthropathy. J. Rheumatol. 1999;26:2684-2690.
  47. Schumacher MJ, Schmidt JO, Egen WB. Lethality of "killer" bee stings. Nature. 1989; 337:413 https://doi.org/10.1038/337413b0
  48. Won CH, Choi ES, Hong SS. Efficacy of bee venom injection for osteoarthritis patients. J Korean Rheum assoc. 1999;6:218-226
  49. 이종선, 조용선, 송기훈, 황수란, 박진, 윤석권, 김한욱. 건조밀봉독(아피톡신주) 주사에 의한 이물 육아종. 대한피부과학회지. 2011;49(10):943-947.
  50. Bauchot R. Snakes: A Natural History. New York City, NY, USA: Sterling Publishing Co, Inc. 1994;194-209. ISBN 1-4027-3181-7.
  51. Fry BG, Roelants K, Champagne DE, Scheib H, Tyndall JD, King GF, Nevalainen TJ, Norman JA, Lewis RJ, Norton RS, Renjifo C, de la Vega RC. The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms. Annu. Rev. Genomics Hum. Genet. 2009;10:483-511. https://doi.org/10.1146/annurev.genom.9.081307.164356
  52. Fry BG, Casewell NR, Wuster W, Vidal N, Young B, Jackson TN. The structural and functional diversification of the Toxicofera reptile venom system. Toxicon. 2012;60:434-448. https://doi.org/10.1016/j.toxicon.2012.02.013
  53. Bottrall JL, Madaras F. Biven CD, Venning MG, Mirtschin PJ. Proteolytic activity of Elapid and Viperid Snake venoms and its implication to digestion. Journal of Venom Research. 2010;1:18-28.
  54. Stewart CJ. Snake bite in Australia: fi rst aid and envenomation management. Accident Emergency Nursing. 2003;11:106-111. https://doi.org/10.1016/S0965-2302(02)00189-3
  55. Campbell CH. Symptomatology, pathology and treatment of the bites of elapid snakes. In: Lee CY, (Ed.), Handbook of Experimental Pharmacology, Snake Venoms. Springer, Berlin. 1979;52:898-921.
  56. http://snakesuntamed.webr.ly/viperids
  57. http://en.wikipedia.org/wiki/Viperidae#Venom
  58. Warrell DA. Snake bite. www.thelancet.com. 2010;75.
  59. Lu Q, Clemetson JM, Clemetson KJ. Snake venoms and hemostasis. J Thromb Haemost. 2005;3:1791-1799. https://doi.org/10.1111/j.1538-7836.2005.01358.x
  60. http://everything.explained.today/Snake_venom/
  61. Rodriguez-Ithurralde D, Silveira R, Barbeito L, Dajas F. Fasciculin, a powerful anticholinesterase polypeptide from Dendroaspis angusticeps venom. Neurochemistry International. 1983;5(3):267-274. https://doi.org/10.1016/0197-0186(83)90028-1
  62. Harel M, Kleywegt GJ, Ravelli BG, Silman I, Sussman JL. Crystal structure of an acetylcholinesterase-fasciculin complex: interaction of a three-fingered toxin from snakevenom with its target. Structure. 1995;3(12):1355-1366. https://doi.org/10.1016/S0969-2126(01)00273-8
  63. Bolioli B, Castello ME, Jerusalinsky D, Rubinstein M, Medina J, Dajas F. Neurochemical and behavioral correlates of unilateral striatal acetylcholinesterase inhibition by fasciculin in rats. Brain Research. 1989;504(1):1-6. https://doi.org/10.1016/0006-8993(89)91590-4
  64. Du XY, Clemetson JM, Navdaev A, Magnenat EM, Wells TN, Clemetson KJ. Qphioluxin, a convulxinlike C-type lectin from Ophiophagus hannah(King cobra) is a powerful platelet activator via glycoprotein VI. J. Biol. Chem. 2002;277:35124-35132. https://doi.org/10.1074/jbc.M204372200
  65. Lee WH, Zhang Y, Wang WY, Xiong YL, Gao R. Isolation and properties of a blood coagulation factor X activator from the venom of king cobra (Ophiophagus hannah). Toxicon. 1995;33:1263-1276. https://doi.org/10.1016/0041-0101(95)00077-Y
  66. Jin Y, Lee WH, Zeng L, Zhang Y. Molecular characterization of L-amino acid oxidase from king cobra venom. Toxicon. 2007;50: 479-489. https://doi.org/10.1016/j.toxicon.2007.04.013
  67. Chen YH, Chu ST. Snake venom cardiotoxin induces G-actin polymerization. Biochimica et Biophysica Acta (BBA) -General Subjects. 1988;966(2):266-268. https://doi.org/10.1016/0304-4165(88)90120-1
  68. Dufton MJ, Hider RC, The structure and pharmacology of elapid cytotoxins. In: Harvey, A.L., (Ed.), International Encyclopaedia of Pharmacology and Therapeutics, Snake Toxins. Pergamon Press, New York. 1991;134:259-302.
  69. Broad AJ, Sutherland SK, Coulter AR. The lethality in mice of dangerous Australian and other snake venoms. Toxicon. 1979;17:664-667. https://doi.org/10.1016/0041-0101(79)90246-0
  70. Minton S and Minton MR. Venomous Reptiles. Scribners New York. 1969.
  71. 노희목, 김승모, 최홍식. 반묘와 가공반묘의 단회투여 독성에 대한 비교연구. Kor. J. Herbology. 2009;24(3):1-12.
  72. Liu R, Li JCT, Jiang X. Investigation of two blood proteins binding to Cantharidinand Norcantharidin by multispectroscopic and chemometrics methods Journal of Luminescence. 2015;157:398-410. https://doi.org/10.1016/j.jlumin.2014.08.029
  73. Mebs D, Pogoda W, Schneider M, Kauert G. Cantharidin and demethyl cantharidin (palasonin) content of blister beetles (Coleoptera: Meloidae) from southern Africa. Toxicon. 2009;53:466-468. https://doi.org/10.1016/j.toxicon.2009.01.005
  74. Moed L, Shwayder TA, Chang MW. Cantharidin revisited: A blistering defense of an ancient medicine (PDF). Archives of Dermatology. 2001;137(10):1357-1360.
  75. Phong Huy Duc Dinh PDH, Corraza F, Mestdagh K, Kassengera Z, Doyen V, Michel O. Validation of the cantharidin-induced skin blister as an in vivo model of inflammation. British Journal of Clinical Pharmacology. 2011;72(6):912-920. https://doi.org/10.1111/j.1365-2125.2011.04020.x
  76. Norman N. A Review: Cantharidin Poisoning. S Afr Farm Pract. 1989:10:70-73.
  77. Binder R. "Malpractice-in dermatology". Cutis; Cutaneous Medicine for the Practitioner. 1979;23(5): 663-666.
  78. Tagwireyi D, Ball DE, Loga PJ, Moyo S. Cantharidin poisoning due to Blister beetle ingestion. Toxicon. 2000;38:1865-1869. https://doi.org/10.1016/S0041-0101(00)00093-3
  79. Fisch HP, Reutter FW, Gloor F. Lesions of the kidney and efferent urinary tract due to cantharidin. Schweiz. Med. Wschr. 1978;108: 1664-1667.
  80. Carver JD, Polak A. Cantharidin poisoning. Brit Med J. 1954;2:1386-1387. https://doi.org/10.1136/bmj.2.4901.1386
  81. Presto AJ and Muecke EL. A dose of Spanish Fly. J Am Med Assoc. 1970;214 (3):591-592. https://doi.org/10.1001/jama.1970.03180030107029
  82. Nickolls LC, Donald T. Poisoning by cantharidin. Brit Med J. 1954;2:1384-1386. https://doi.org/10.1136/bmj.2.4901.1384
  83. Ratcliffe NA, Mello CB, Garcia ES, Butt TM, Azambuja P. Insect natural products and processes: New treatments for human disease. Insect Biochemistry and Molecular Biology. 2011;41(10):747-769. https://doi.org/10.1016/j.ibmb.2011.05.007
  84. https://en.wikipedia.org/wiki/Cantharidin
  85. Sanchez-Barbudo IS, Camarero PR, Garcia- Montijano M, Mateo R. Possible cantharidin poisoning of a great bustard (Otis tarda). Toxicon. 2012;59:100-103. https://doi.org/10.1016/j.toxicon.2011.10.002
  86. 대한한의학회. 한의사 의료분쟁 사례분석 및 대처방안 연구. 2013;123-124.
  87. 신승우. 오공독에 관한 문헌적 고찰. 대한면역약침학회지. 2012;1(1):81-91
  88. Noda N, Yashiki Y, Nakatani T, Miyahara K, Du XM. A novel quinoline alkaloid possessing a 7-benzyl group from the centipede. Scolopendra subspinipes. Chemical & Pharmaceutical Bulletin. 2001;49:930-931. https://doi.org/10.1248/cpb.49.930
  89. Zlotkin E. Comprehensive Molecular Insect Science;5.6 -Scorpion Venoms. Pharmacology. 2005; 5:173-220.
  90. Cooper AM, Fox GA, Nelsen DR, Hayes WK. Variation in venom yield and protein concentration of the centipedes Scolopendra polymorpha and Scolopendra subspinipes. Toxicon. 2014;82:30-51. https://doi.org/10.1016/j.toxicon.2014.02.003
  91. https://en.wikipedia.org/wiki/Scolopendra_subspinipes
  92. Bush SP, King BO, Norris RL & Stockwell SA. "Centipede envenomation". Wilderness & Environmental Medicine. 2001;12(2):93-99. https://doi.org/10.1580/1080-6032(2001)012[0093:CE]2.0.CO;2
  93. Bettini S. Arthropod Venoms in Handbook of Experimental Pharmacology/ Handbuch der experimentellen Pharmakologie. 1978.
  94. www.epharmacognosy.com