DOI QR코드

DOI QR Code

Flame Resistance Performance of Architectural Membranes Using Basalt Woven Fabric

Basalt Woven Fabric을 적용한 건축용 막재의 난연특성

  • Kim, JiHyeon (Eco & Composite Materials Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Song, Hun (Eco & Composite Materials Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Shin, HyeonUk (Eco & Composite Materials Center, Korea Institute of Ceramic Engineering & Technology)
  • 김지현 (한국세라믹기술원 에코복합소재센터) ;
  • 송훈 (한국세라믹기술원 에코복합소재센터) ;
  • 신현욱 (한국세라믹기술원 에코복합소재센터)
  • Received : 2015.12.04
  • Accepted : 2016.04.19
  • Published : 2016.04.30

Abstract

The membrane structure provides high satisfaction with lightweight, improved workability, reduced cost, and a free shape. Thus, its applications expanding. On the other hand, in an architectural membrane that is vulnerable to fire, the development of various architectural membranes with flame resistance is in demand. Therefore, this study applied basalt woven fabric safety for flame resistance, excellent heat insulation and thermal properties on an architectural membrane. The PTFE- coated basalt woven fabric membrane was compared with a PTFE coated glass fiber membrane by DSC/TGA, strength properties, flammability, and incombustibility properties. In addition, this study confirmed the membrane applicability of basalt woven fabric and basalt-glass hybrid woven fabric through a comparison with existing architectural membranes.

막구조 건축물은 경량의 건축용 막재를 사용하므로 자유로운 곡면표현이 가능하고 시각적인 만족도가 높아 그 사용이 점차 확대되고 있다. 하지만 건축용 막재를 구성하는 직물이 화재에 취약하므로 용도에 적합하며 보다 높은 난연성능을 가지는 불연성 막재의 개발이 요구되고 있다. 따라서 본 연구에서는 단열성, 내열성, 불연성이 우수한 현무암섬유를 건축용 막재의 직포로 적용하고 PTFE 분산 수지를 함침 코팅하여 DSC/TGA 열분석, 강도특성, 방염 및 난연특성을 평가하였다. 또한, 일반적으로 사용되는 건축용 막재 중 성능이 가장 우수한 유리섬유 직포 막재와 난연특성을 비교하였으며 평가결과 현무암섬유 직포의 건축용 막재로서의 가능성을 확인할 수 있었다.

Keywords

References

  1. Korean association for spatial structures, "Design Code and Commentary for Membrane Structures", Korea (2010).
  2. S. D. Kim, "The Present and Future of Architectural Fabrics", Architectural Institute Of Korea, Vol. 49, No. 10, pp. 49-56 (2005).
  3. International code council, "International Building code", (2012).
  4. NFPA 701 Standard Methods of Fire Tests for Flame Propagation of Textiles and Films.
  5. Membrane Structures Association of Japan, "Technical Criteria of Membrane Structures and Membrane Materials" (2003).
  6. MSAJ/M-03:2003, "Test Methods for Membrane Materials (Coated Fabrics)-Qualities and Performances", Membrane Structures Association of Japan.
  7. H. J. Park, S. M. Park, J. W. Lee, G. C. Roh and J. K. Kim, "Studies on the Melting Characterizaion of Basalt and its Continuous Fiber Spinning", Journal of the Korean Society for Composite Materials, Vol. 23, No. 3, pp. 43-49 (2010). https://doi.org/10.7234/kscm.2010.23.3.043
  8. S. H. Chun and H. D. Kim, "Physical Properties of Basalt Chopped Fiber Reinforced Cement Composite", The Korea Academia-Industrial cooperation Society, Vol. 10, No. 6, pp. 1298-1303 (2009). https://doi.org/10.5762/KAIS.2009.10.6.1298
  9. S. J. Um, "A Study on the Marketing Strategy of Advanced Materials Product-Focused on Basalt Fiber", Kang-Nam University (2006).
  10. N. Morova, "Investigation of Usability of Basalt Fibers in Hot Mix Asphalt Concrete", Construction and Building Materials, Vol. 47, pp. 175-180 (2013). https://doi.org/10.1016/j.conbuildmat.2013.04.048
  11. J. I. Choi, Y. H. Jang, J. W. Lee and B. Y. Lee, "Engineering Property of Basalt Fiber as a Reinforcing Fiber", Journal of the Korean Recycled Construction Resources Institute, Vol. 3, No. 1, pp. 84-89 (2015). https://doi.org/10.14190/JRCR.2015.3.1.084
  12. J. W. Lee, Y. H. Kim, M. K. Jung, S. W. Yoon and J. M. Park, "Fabrication of Carbon/Basalt Hybrid Composites and Evaluation of Mechanical Properties", Composites Research, Vol. 27, No. 1, pp. 14-18 (2014). https://doi.org/10.7234/composres.2014.27.1.014
  13. KS L 2513 Testing methods for Textile Glass Products, Korea Standard Association (2015).
  14. KS K 0521 Textiles-Tensile properties of fabrics-Determination of maximum force and elongation at maximum force using the strip method, Korea Standard Association (2011).
  15. KS F 2819 Testing method for incombustibility of thin materials for buildings, Korea Standard Association (2005).
  16. KS F ISO 5660-1 Fire Tests for Combustion (Cone Calorimeter Test), Korea Standard Association (2009).
  17. ISO 5660-1, Reaction to Fire, Part 1. Rate of Heat Release from Building Products (Cone Calorimeter), Genever (1993).
  18. C. K. Lee, D. H. Lee and W. S. Jung, "The Heat Release Rate Comparison of Subway Car's Interior Materials using Cone Calorimeter", Proceedings of 2005 Spring Annual Conference, The Korean Society For Railway, pp. 70-76 (2005).
  19. K. C. Tsai, "Orientation Effect on Cone Calorimeter Test Results to Assess Fire Hazard of Materials", Journal of Hazardous Materials, Vol. 172, pp. 763-772 (2009). https://doi.org/10.1016/j.jhazmat.2009.07.061
  20. J. S. Choi, J. Y. Shon and J. H. Shin, "Changes in the Chemical Structure and the Thermal/Physical Properties of Fluoropolymer Films Induced by Gamma Irradiation under Various Environments", Polymer (Korea), Vol. 38, No. 4, pp. 457-463 (2014). https://doi.org/10.7317/pk.2014.38.4.457
  21. J. H. Kim and H. Song, "Flame Resistance Performance of Glass Fiber and Polyester Fiber Architectural Membranes", Proceeding of Korean Institute of Building Construction, Vol. 30, No. 1 (2016).
  22. S. Y. Park, D. H. Kim and H. S. Im, "The Experimental Study for the Combustion-Property of Sandwich Panels using ISO 5660 Cone Calorimeter", Fire Science and Engineering, Vol. 20, No. 4, pp. 33-40 (2006).
  23. C. K. Lee, W. S. Jung and D. H. Lee, "Fire Characteristics of Composites for Interior Panels Using Cone Calorimeter", The Korean Society For Railway, Vol. 7, No. 1, pp. 55-59 (2004).
  24. K. W. Lee and K. E. Kim, "Fire Characteristics of Plastic Insulating Materials from Cone Calorimeter Test", Fire Science and Engineering, Vol. 17, No. 1, pp. 76-83 (2003).
  25. T. M. Kotresh, R. Indushekar, M. S. Subbulakshmi, S. N. Vijayalakshmi, A. S. Krishna Prasad, V. C. Padaki and A. K. Agrawal, "Effect of Heat Flux on the Burning Behaviour of Foam and Foam/Nomex III Fabric Combination in the Cone Calorimeter", Polymer Testing, Vol. 25, Issue 6, pp. 744-757 (2006). https://doi.org/10.1016/j.polymertesting.2006.05.009

Cited by

  1. Flame Resistance Performance of Architectural Membrane According to Woven Fabrics and Coating Materials vol.16, pp.6, 2016, https://doi.org/10.5345/JKIBC.2016.16.6.545
  2. A Study on the Fire Safety of Seat Covers in Railway Vehicles vol.18, pp.5, 2018, https://doi.org/10.9798/KOSHAM.2018.18.5.171