DOI QR코드

DOI QR Code

Service Life Evaluation through Probabilistic Method Considering Time-Dependent Chloride Behavior

염해 시간의존성을 고려한 확률론적 내구수명 평가

  • 권성준 (한남대학교 건설시스템 공학과)
  • Received : 2015.06.12
  • Accepted : 2015.09.22
  • Published : 2016.04.30

Abstract

The service life in RC (Reinforced Concrete) is very important and it is usually obtained through deterministic method based on Fick's 2nd law and probabilistic method. This paper presents an evaluation of $P_{df}$(durability failure probability) and the related service life considering time-dependent behaviors in chloride diffusion and surface chloride content. For the work, field investigation is performed for RC structures exposed to chloride attack for 3.5~4.5years, focusing tidal zone (6.0 m) and sea shore (9.0 m), respectively. Random variables like cover depth, chloride diffusion coefficient, and surface chloride content are obtained, and $P_{df}$ and the service life are evaluated. Unlike the results from deterministic method using LIFE 365, probabilistic method with time effects on diffusion and surface chloride shows a relatively rapid change in the result, which is a significant reductions of service life in the case with low surface chloride content. For probabilistic evaluation of durability, high surface chloride content over $10.0kg/m^3$ is required and reasonable service life can be derived with consideration of time-dependent diffusion coefficient.

염해에 노출된 콘크리트의 내구수명은 매우 중요한데, 주로 Fick's 2법칙에 근거한 결정론적인 방법과 확률론에 근거한 방법이 사용되고 있다. 본 연구에서는 시간의존적 확산계수와 표면염화물량을 고려하여 내구적 파괴확률과 이에 따른 내구수명의 변화를 평가하였다. 이를 위해 3.5~4.5년, 비교적 짧은 기간 염해에 노출된 RC 교각에 대하여 해상부(9.0 m)와 간만대(6.0 m) 구분하여 실태조사를 수행하였다. 피복두께, 표명염화물량, 염화물 확산계수에 대한 확률변수를 도출하였으며, MCS을 이용하여 내구적 파괴확률과 내구수명을 평가하였다. Life365를 이용한 결정론적 방법과 다르게, 시간의존성을 고려한 확률해석에서는 내구수명의 변동이 크게 발생하였으며, 표면염화물량이 낮은 조건에서는 초기에 빠른 내구수명의 감소가 평가되었다. 실태조사 결과를 이용하여 확률론적인 내구성 평가를 할 경우, 장기간 염해에 노출되어 $10.0kg/m^3$ 이상의 높은 표면염화물량이 필요함을 알 수 있으며, 확산계수의 시간의존성에 따른 감소를 고려하면 합리적인 내구수명을 평가할 수 있다.

Keywords

References

  1. Broomfield, J. P., Corrosion of Steel in Concrete: Understanding, Investigation and Repair, London, E&FN, 1997, pp.1-15.
  2. Kwon, S.-J., Park, S. S., and Lho, B.-C., "Durability Evaluation of Inorganic-Impregnated Concrete Exposed to Long-Term Chloride Exposure Test", Journal of the Korea Concrete Institute, Vol.20, No.3, 2008, pp.283-290. https://doi.org/10.4334/JKCI.2008.20.3.283
  3. Thomas, M.D.A., and Bentz, E.C., Computer program for predicting the service life and life-cycle costs of reinforced concrete exposed to chlorides, Life365 Manual, SFA, 2002, pp.2-28.
  4. Lee, S.-H., and Kwon, S.-J., "Experimental Study on the Relationship between Time-Dependent Chloride Diffusion Coefficient and Compressive Strength", Journal of the Korea Concrete Institute, Vol.24, No.6, 2012, pp.715-726. https://doi.org/10.4334/JKCI.2012.24.6.715
  5. Park, S.-S., Kwon, S.-J., and Jung, S.-H., "Analysis Technique for Chloride Penetration in Cracked Concrete Using Equivalent Diffusion and Permeation", Construction and Building Materials, Vol.29, No.2, 2012, pp.183-192. https://doi.org/10.1016/j.conbuildmat.2011.09.019
  6. Maekawa, K., Ishida, T., and Kishi, T., "Multi-Scale Modeling of Concrete Performance", Journal of Advanced Concrete Technology, Vol.1, No.2, 2003, pp.91-126. https://doi.org/10.3151/jact.1.91
  7. Song, H.-W., Pack, S.-W., Lee, C.H., and Kwon, S.-J., "Service Life Prediction of Concrete Structures under Marine Environment Considering Coupled Deterioration", Journal of Restoration Building and Monuments, Vol.12, No.4, 2006, pp.265-284.
  8. Duprat, F., and Sellier, A., "Probabilistic Approach to Corrosion Risk Due to Carbonation via An Adaptive Response Surface Method", Journal of Probability Engineering and Mechanics, Vol.21, No.4, 2006, pp.207-216. https://doi.org/10.1016/j.probengmech.2005.11.001
  9. Ferreira, F., Arskog, V., and Gjorv, O. E., "Probability Based Durability Analysis of Concrete Harbor Structures", Proceedings of CONSEC04, Vol.1, No.1, 2004, pp.999-1006.
  10. ACI 318-11, Building Code Requirements for Structural Concrete and Commentary, 2011.
  11. British Standards 6349-1-4, Maritime Works, General, Code of Practice for Materials, 2013.
  12. British Standards-8110-1, Structural Use of Concrete, Code of Practice for Design and Construction, 1997.
  13. Japan Society of Civil Engineering, Standard Specifications and Guidelines, 2007.
  14. British Standars, 8500-1, Concrete Complementary British Standard to BS EN 206-1: Method of Specifying and Guidance for the Specifier, 2006.
  15. Japan Society of Civil Engineering-Concrete Committee, Standard Specification for Concrete Structures, 2002.
  16. ACI 301-10, Specifications for Structural Concrete, 2010.
  17. Korea Concrete Institute. Concrete Standard Specification - Durability Part, 2004.
  18. Kwon, S.-J., Na, U.J., Park, S.S., and Jung, S.H., "Service Life Prediction of Concrete Wharves with Early-Aged Crack: Probabilistic Approach for Chloride Diffusion", Structure and Safety, Vol.31, No.1, 2009, pp.75-83. https://doi.org/10.1016/j.strusafe.2008.03.004
  19. CEB Task Group 5.1, 5.2, New Approach to Durability Design, CEB, Sprint-Druck, Stuttgart, 1997, pp.29-43.
  20. Song, H.-W., Pack, S.-W., and Ann, K.-Y., "Probabilistic Assessment to Predict the Time to Corrosion of Steel in Reinforced Concrete Tunnel Box Exposed to Sea Water", Construction and Building Materials, Vol.23, No.10, pp. 3270-3278. https://doi.org/10.1016/j.conbuildmat.2009.05.007
  21. Stewart, M.G., and Mullard, J.A., "Spatial Time-Dependent Reliability Analysis of Corrosion Damage and the Timing of First Repair for RC Structures", Engineering Structure, Vol.29, No.7, 2007, pp.1457-1464. https://doi.org/10.1016/j.engstruct.2006.09.004
  22. Stewart, M.G., and Rosowsky, D.V., "Time-Dependent Reliability of Deteriorating Reinforced Concrete Bridge Decks", Structure and Safety, Vol.20, No.1, 2007, pp.91-109.
  23. Kwon, S.-J., Song, H.-W., and Byun, K.J., "Durability Design for Cracked Concrete Structures Exposed to Carbonation Using Stochastic Approach", Journal of Korea Society of Civil Engineering, Vol.25, No.5A, pp.741-750.
  24. Kwon, S.-J., Park, S.-S., Nam, S.-H., and Lho, B.-C., "A Service Life Prediction for Unsound Concrete Under Carbonation Through Probability of Durable Failure", Journal of the Korea Institute for Structural Maintenance and Inspection, Vol.12, No.2, 2008, pp.49-58.
  25. DuraCrete-Final Technical Report, Probabilistic Performance Based Durability Design of Concrete Structures, Document BE95-1347/R17, European Brite-Euram III, Published by CUR, May, The Netherlands, 2000.
  26. Japan Society of Civil Engineering. Concrete Library 109: Proposal of the Format for Durability Database of Concrete, 2002.
  27. EN 1991. Eurocode 1, Basis of Design and Actions on Structures, CEN, 2000.
  28. Nawy, E.G., Reinforced Concrete-A Fundamental Approach, Prentice Hall, Inc. 2nd Edition, 1990, pp. 69-72.