DOI QR코드

DOI QR Code

Shear Friction Strength Model of Concrete considering Transverse Reinforcement and Axial Stresses

축응력 및 횡보강근을 고려한 콘크리트의 전단마찰내력 평가모델

  • Hwnag, Yong-Ha (Dept. of Architectural Engineering, Kyonggi University Graduate School) ;
  • Yang, Keun-Hyeok (Dept. of Plant.Architectural Engineering, Kyonggi University)
  • 황용하 (경기대학교 건축공학과) ;
  • 양근혁 (경기대학교 플랜트.건축공학과)
  • Received : 2015.08.20
  • Accepted : 2016.01.08
  • Published : 2016.04.30

Abstract

Shear friction strength model of concrete was proposed to explain the direct friction mechanism at the concrete interfaces intersecting two structural elements. The model was derived from a mechanism analysis based on the upper-bound theorem of concrete plasticity considering the effect of transverse reinforcement and applied axial loads on the shear strength at concrete interfaces. Concrete was modelled as a rigid-perfectly plastic material obeying modified Coulomb failure criteria. To allow the influence of concrete type and maximum aggregate size on the effectiveness strength of concrete, the stress-strain models proposed by Yang et al. and Hordijk were employed in compression and tension, respectively. From the conversion of these stress-strain models into rigidly perfect materials, the effectiveness factor for compression, ratio of effective tensile strength to compressive strength and angle of concrete friction were then mathematically generalized. The proposed shear friction strength model was compared with 91 push-off specimens compiled from the available literature. Unlike the existing equations or code equations, the proposed model possessed an application of diversity against various parameters. As a result, the mean and standard deviation of the ratios between experiments and predictions using the present model are 0.95 and 0.15, respectively, indicating a better accuracy and less variation than the other equations, regardless of concrete type, the amount of transverse reinforcement, and the magnitude of applied axial stresses.

이 연구는 다양한 콘크리트에 대해 전단마찰 거동에 의해 지배되는 부재에서 전단전달 기구를 설명하고 합리적인 전단마찰내력을 평가하기 위한 모델을 제안하였다. 제안된 모델의 기본식은 횡보강근과 작용 축응력을 고려하여 소성론의 상계치 이론(Upper-bound theorem)에 기반하여 유도하였다. 콘크리트는 수정 Coulomb 파괴 기준에 의해 완전한 소성 강체로 고려하였다. 콘크리트 유효강도에서 콘크리트 종류와 최대 골재 크기에 따른 영향을 적용하기 위해 Yang et al.의 압축 응력-변형률 모델과 CEB-FIP의 인장 응력-변형률 모델을 적용하였다. 이 응력-변형률 모델들을 이용한 완전 소성모델로의 변환을 통하여 유효압축강도계수, 유효강도비 그리고 콘크리트 마찰각을 간단한 식으로 일반화 하였다. 제시된 전단마찰내력 모델은 기존 연구에서 제시된 모델과 함께 91개의 직접전단 실험결과와 비교하였다. 그 결과로 이 연구에서 제시된 모델은 콘크리트 종류, 횡보강근 양 그리고 작용 축응력을 고려하여 전단마찰내력을 평가할 수 있었으며, 예측값에 대한 실험값의 비의 평균과 표준편차가 각각 0.95, 0.15로서 기존 식들에 비해 더 정확한 결과를 얻을 수 있었다.

Keywords

References

  1. ACI Committee 318, Building Code Requirements for Structural Concrete (ACI 318-11) and Commentary, American Concrete Institute, Farmington Hills, Michigan, USA, 2011, p.187.
  2. Mun, J. H., Mun, J. S., and Yang, K. H., "Stress-Strain Relationship of Heavyweight Concrete Using Magnetite Aggregate", Architectural Institute of Korea, Vol.29, No.8, 2013, pp.85-92.
  3. Yang, K. H., Sim, J. I., Kang, J. H., and Ashour, A. F., "Shear Capacity of Monolithic Concrete Joints Without Transverse Reinforcement", Magazine of Concrete Research, Vol.64, No.9, 2012, pp.767-780. https://doi.org/10.1680/macr.11.00107
  4. AASHTO, AAHSTO LRFD Bridge Design Specifications, American Association of State Highway and Transportation Officials, 2012, pp.5.78-5.80.
  5. Shaikh, A. F., "Proposed Revisions to Shear-Friction Provisions", PCI Journal, Vol.23, No.2, 1978, pp.12-21.
  6. Walraven, J. C., Frenay, J., and Pruijssers, A., "Influence of Concrete Strength and Load History on the Shear Friction Capacity of Concrete Members", PCI Journal, Vol.32, No.1, 1987, pp.66-84. https://doi.org/10.15554/pcij.01011987.66.84
  7. Loov, R. E., and Patnaik, A. K., "Horizontal Shear Strength of Composite Concrete Beams With a Rough Interface", PCI Journal, Vol.39, No.1, 1994, pp.48-69. https://doi.org/10.15554/pcij.01011994.48.69
  8. Mattock, A. H., "Shear Friction and High-Strength Concrete", ACI Structural Journal, Vol.98, No.1, 2001, pp.50-59.
  9. Nielsen, M. P., Limit Analysis and Concrete Plasticity, CRC Press, USA, 2010, pp.629-644.
  10. Mattock, A. H., Shear Transfer under Monotonic Loading, Acrossan Interface Between Concretes Cast at Different Times, Report No. SM76-3, University of Washington Department of Civil Engineering, Seattle, Washington, 1976, pp.1-35.
  11. Hofbeck, J. A., Ibrahim, I. O., and Mattock, A. H., "Shear Transfer in Reinforced Concrete", ACI Structural Journal, Vol.66, No.2, 1969, pp.119-128.
  12. Mattock, A. H., Li, W. K., and Wang, T. C., "Shear Transfer in Lightweight Reinforced Concrete", PCI Journal, Vol.32, No.1, 1976, pp.20-39.
  13. Mattock, A. H., and Hawkins, N. M., "Shear Transfer in Reinforced Concrete - Recent Research", PCI Journal, Vol.17, No.2, 1972, pp.76-93.
  14. Mattock, A. H., Johal, L., and Chow, H. C., "Shear Transfer in Reinforced Concrete with Moment or Tension Acting Across the Shear Plane", PCI Journal, Vol.20, No.4, 1975, pp.76-93. https://doi.org/10.15554/pcij.07011975.76.93
  15. Yang, K. H., Mun, J. H., Cho, M. S., and Kang, T. H. K., "A Stress-Strain Model for Various Unconfined Concrete in Compression", ACI Structural Journal, Vol.111, No.4, 2014, pp.819-826.
  16. Hodrdok, D. A. "Local Approach to Fatigue of Concrete", PhD thesis, Delft University of Technology, Delft, Netherlands, 1991, p.210.
  17. CEB-FIP, CEB-FIP Modle Code 1990 for Concrete Structures, Committee Euro International Du Beton, Lausanne, Switzerland, 1993, pp.213-214.
  18. Sim, J. I., Yang, K. H., Lee, E. T., and Yi, S. T., "Effects of Aggregate and Specimen Sizes on Lightweight Concrete Fracture Energy", Journal of Materials in Civil Engineering, ASCE, Vol.26, No.5, 2014, pp.845-854. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000884

Cited by

  1. Effect of Shear Reinforcement and Compressive Stress on the Shear Friction Strength of Concrete vol.28, pp.4, 2016, https://doi.org/10.4334/JKCI.2016.28.4.419
  2. Effect of Transverse Reinforcement on the Shear Friction Capacity of Concrete Interfaces with Construction Joint vol.28, pp.5, 2016, https://doi.org/10.4334/JKCI.2016.28.5.555