DOI QR코드

DOI QR Code

Numerical Study of Chemical Reaction for Liquid Rocket Propellant Using Equilibrium Constant

평형상수를 이용한 액체로켓 추진제의 화학반응 수치연구

  • Received : 2015.02.26
  • Accepted : 2016.03.11
  • Published : 2016.04.01

Abstract

Liquid rocket propulsion is a system that produces required thrust for satellites and space launch vehicles by using chemical reactions of a liquid fuel and a liquid oxidizer. Monomethylhydrazine/dinitrogen tetroxide, liquid hydrogen/liquid oxygen and RP-1/liquid oxygen are typical combinations of liquid propellants commonly used for the liquid rocket propulsion system. The objective of the present study is to investigate useful design and performance data of liquid rocket engine by conducting a numerical analysis of thermochemical reactions of liquid rocket propellants. For this, final products and chemical compositions of three liquid propellant combinations are calculated using equilibrium constants of major elementary equilibrium reactions when reactants remain in chemical equilibrium state after combustion process. In addition, flame temperature and specific impulse are estimated.

액체로켓 추진시스템은 액체 추진제와 액체 산화제의 화학반응을 통해 추력을 발생하는 방식으로써 우주발사체 및 인공위성을 포함한 우주비행체에 광범위하게 적용되고 있다. 일반적으로 사용되는 액체로켓 추진제로는 모노메틸하이드라진/사산화이질소, 액체수소/액체산소 및 RP-1/액체산소 조합 등이 있다. 본 연구의 목적은 액체로켓 추진제의 열화학적 반응을 수치적으로 분석함으로써, 이를 통해 궁극적으로 액체로켓엔진의 설계와 성능에 필요한 유용한 정보를 예측하고자 하는 데 있다. 이를 위해 앞서 언급한 3가지 조합의 연료와 산화제에 대하여 연소반응 후 화학평형상태에 도달했을 때 주요 요소평형반응들의 평형상수 값들을 이용해 최종 생성물의 성분과 화학조성을 계산하였고 그 결과를 이용해 단열화염온도와 로켓성능변수인 비추력을 예측하는 연구를 진행하였다.

Keywords

References

  1. Sutton, G. P., Rocket Propulsion Elements, John Wiley & Sons Inc., 2010.
  2. Amri, R., Rezoug, T., "Numerical Study of Liquid Propellants Combustion for Space Applications", Acta Astronautica, Vol. 69, Sept. 2011, pp.485-498. https://doi.org/10.1016/j.actaastro.2011.05.008
  3. Han, C. Y., "Types and Characteristics of Chemical Propulsion Systems for Representative Korean Satellites," Journal of the Korean Society for Aeronautical & Space Sciences, Vol. 35, No. 8, 2007, pp.747-752. https://doi.org/10.5139/JKSAS.2007.35.8.747
  4. Jang, Y. H. and Lee, K. H., "A Development Trend Study of Bipropellant Rocket Engine for Orbit Transfer and Attitude Control of Satellite," Journal of The Korean Society of Propulsion Engineers, Vol. 19, No. 1, 2015, pp.50-60. https://doi.org/10.6108/KSPE.2015.19.1.050
  5. Han, C. Y. and Chae, J. W., "Bipropellant Liquid Apogee Engine for a GEO Satellite", Proceedings of 2014 KSAS Spring Conferences, 2014, pp.429-433.
  6. Yoon, W. S., Kim, Y. S., Rocket Engineering, Kyungmoon Publisher, 2004.
  7. Jang, Y. H. and Lee, K. H., "Numerical Analysis of Chemical Equilibrium for MMH/NTO and $H_2$/$O_2$," KSPE Spring Conference, 2014, pp.107-110.
  8. Lee, K. H. and Jang, Y. H., "Chemical Equilibrium Reaction Analysis of Liquid Rocket Propellants," 8th Asian-Pacific Conference on Aerospace Technology and Science, 2015, pp.852-856.
  9. Turns, S. R., An Introduction to Combustion: Concepts and Applications, Mc-Graw Hill, 2012.
  10. Humble, R. W., Henry, G. N., Larson, W. J., Space Propulsion Analysis and Design, McGrawHill, 1995.
  11. McBride, B. J., Gordon. S., Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications, NASA RP-1311, NASA Lewis Research Center, OH, 1996.
  12. Chapra, S. C., Applied Numerical Methods with Matlab, McGraw-Hill, 2008.
  13. Jang, Y. H. and Lee, K. H.,, "Numerical Analysis of Chemical Equilibrium for 10N and 400N MMH/NTO Bipropellant Rocket Engine", Proceedings of 2014 KSAS Fall Conferences, 2014, pp.1550-1553.

Cited by

  1. Numerical comparison of exhaust plume flow behaviors of small monopropellant and bipropellant thrusters vol.12, pp.5, 2017, https://doi.org/10.1371/journal.pone.0176423
  2. Plume influence analysis of small bipropellant thruster on solar array of GEO satellite vol.13, pp.9, 2018, https://doi.org/10.1371/journal.pone.0199667