DOI QR코드

DOI QR Code

Characteristics of Ni1/3Co1/3Mn1/3(OH)2 Powders Prepared by Co-Precipitation in Air and Nitrogen Atmospheres

공기와 질소 분위기에서 공침법으로 합성된 Ni1/3Co1/3Mn1/3(OH)2 분말의 특성 비교

  • Choi, Woonghee (Department of Advanced Materials Engineering, Korea Polytechnic University) ;
  • Park, Se-Ryen (Department of Advanced Materials Engineering, Korea Polytechnic University) ;
  • Kang, Chan Hyoung (Department of Advanced Materials Engineering, Korea Polytechnic University)
  • 최웅희 (한국산업기술대학교 신소재공학과) ;
  • 박세련 (한국산업기술대학교 신소재공학과) ;
  • 강찬형 (한국산업기술대학교 신소재공학과)
  • Received : 2016.02.29
  • Accepted : 2016.04.04
  • Published : 2016.04.28

Abstract

As precursors of cathode materials for lithium ion batteries, $Ni_{1/3}Co_{1/3}Mn_{1/3}(OH)_2$ powders are prepared in a continuously stirred tank reactor via a co-precipitation reaction between aqueous metal sulfates and NaOH in the presence of $NH_4OH$ in air or nitrogen ambient. Calcination of the precursors with $Li_2CO_3$ for 8 h at $1,000^{\circ}C$ in air produces dense spherical cathode materials. The precursors and final powders are characterized by X-ray diffraction (XRD), scanning electron microscopy, particle size analysis, tap density measurement, and thermal gravimetric analysis. The precursor powders obtained in air or nitrogen ambient show XRD patterns identified as $Ni_{1/3}Co_{1/3}Mn_{1/3}(OH)_2$. Regardless of the atmosphere, the final powders exhibit the XRD patterns of $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ (NCM). The precursor powders obtained in air have larger particle size and lower tap density than those obtained in nitrogen ambient. NCM powders show similar tendencies in terms of particle size and tap density. Electrochemical characterization is performed after fabricating a coin cell using NCM as the cathode and Li metal as the anode. The NCM powders from the precursors obtained in air and those from the precursors obtained in nitrogen have similar initial charge/discharge capacities and cycle life. In conclusion, the powders co-precipitated in air can be utilized as precursor materials, replacing those synthesized in the presence of nitrogen injection, which is the usual industrial practice.

Keywords

References

  1. A. Mersman and M. Kind: Chem. Eng. Technol., 11 (1988) 264. https://doi.org/10.1002/ceat.270110136
  2. S. Jouanneau, K. W. Eberman, L. J. Krause and J. R. Dahn: J. Electrochem. Soc., 150 (2003) A1637. https://doi.org/10.1149/1.1622956
  3. M.-H. Lee, Y.-J. Kang, S.-T. Myung and Y.-K. Sun: Electrochim. Acta, 50 (2004) 939. https://doi.org/10.1016/j.electacta.2004.07.038
  4. A. van Bommel and J. R. Dahn: J. Electrochem. Soc., 156 (2009) A362. https://doi.org/10.1149/1.3079366
  5. A. van Bommel and J. R. Dahn: Chem. Mater., 21 (2009) 1500. https://doi.org/10.1021/cm803144d
  6. Y.-K. Sun, B.-R. Lee, H.-J. Noh, H. Wu, S.-T. Myung and K. Amine: J. Mater. Chem., 21 (2011) 10108. https://doi.org/10.1039/c0jm04242k
  7. D. Kang, N. Arailym, J. E. Chae and S.-S. Kim: J. Korean Electrochem. Soc., 16 (2013) 191 (Korean). https://doi.org/10.5229/JKES.2013.16.4.191
  8. S.-H. Park, S.-H. Kang, I. Belharouak, Y. K. Sun and K. Amine: J. Power Sources 177 (2008) 177. https://doi.org/10.1016/j.jpowsour.2007.10.062
  9. D. Wang, I. Belharouak, G. M. Koenig Jr., G. Zhou and K. Amine: J. Mater. Chem., 21 (2011) 9290. https://doi.org/10.1039/c1jm11077b
  10. K. Wu, F. Wang, L. Gao, M.-R. Li, L. Xiao, L. Zhao, S. Hu, X, Wang, Z. Xu and Q. Wu: Electrochim. Acta, 75 (2012) 393. https://doi.org/10.1016/j.electacta.2012.05.035
  11. Z. Xu, L. Xiao, F. Wang, K. Wu, L. Zhao, M.-R. Li, H.-L. Zhang, Q. Wu and J. Wang: J. Power Sources, 248 (2014) 180. https://doi.org/10.1016/j.jpowsour.2013.09.064
  12. A. Rougier, P. Gravereau and C. Delmas: J. Electrochem. Soc., 143 (1996) 1168. https://doi.org/10.1149/1.1836614
  13. S. W. Oh, S. H. Park, C.-W. Park and Y.-K. Sun: Solid State Ionics, 171 (2004) 167. https://doi.org/10.1016/j.ssi.2004.04.012
  14. D. D. MacNeil, Z. Lu and J. R. Dahn: J. Electrochem. Soc., 149 (2002) A1332. https://doi.org/10.1149/1.1505633
  15. T. Ohzuku, A. Ueda and M. Nagayama: J. Electrochem. Soc., 140 (1993) 1862. https://doi.org/10.1149/1.2220730
  16. Z. Lu, D. D. MacNeil and J. R. Dahn: Electrochem. Solid- State Lett., 149 (2002) A778.
  17. Z. Lu, L. Y. Beaulieu, R. A. Donaberger, C. L. Thomas and J. R. Dahn: J. Electrochem. Soc., 149 (2002) A778. https://doi.org/10.1149/1.1471541
  18. F. Weill, N. Tran, L. Croguennec and C. Delmas: J. Power Sources, 172 (2007) 893. https://doi.org/10.1016/j.jpowsour.2007.05.090

Cited by

  1. Effects of Precursor Co-Precipitation Temperature on the Properties of LiNi1/3Co1/3Mn1/3O2 Powders vol.23, pp.4, 2016, https://doi.org/10.4150/KPMI.2016.23.4.287