DOI QR코드

DOI QR Code

Role of mitogen-activated protein kinases and nuclear factor-kappa B in 1,3-dichloro-2-propanol-induced hepatic injury

  • Lee, In-Chul (BK21 Plus Team, College of Veterinary Medicine, Chonnam National University) ;
  • Lee, Sang-Min (BK21 Plus Team, College of Veterinary Medicine, Chonnam National University) ;
  • Ko, Je-Won (BK21 Plus Team, College of Veterinary Medicine, Chonnam National University) ;
  • Park, Sung-Hyeuk (BK21 Plus Team, College of Veterinary Medicine, Chonnam National University) ;
  • Shin, In-Sik (BK21 Plus Team, College of Veterinary Medicine, Chonnam National University) ;
  • Moon, Changjong (BK21 Plus Team, College of Veterinary Medicine, Chonnam National University) ;
  • Kim, Sung-Ho (BK21 Plus Team, College of Veterinary Medicine, Chonnam National University) ;
  • Kim, Jong-Choon (BK21 Plus Team, College of Veterinary Medicine, Chonnam National University)
  • Received : 2016.02.16
  • Accepted : 2016.03.03
  • Published : 2016.03.30

Abstract

In this study, the potential hepatotoxicity of 1,3-dichloro-2-propanol and its hepatotoxic mechanisms in rats was investigated. The test chemical was administered orally to male rats at 0, 27.5, 55, and 110 mg/kg body weight. 1,3-Dichloro-2-propanol administration caused acute hepatotoxicity, as evidenced by an increase in serum aminotransferases, total cholesterol, and total bilirubin levels and a decrease in serum glucose concentration in a dose-dependent manner with corresponding histopathological changes in the hepatic tissues. The significant increase in malondialdehyde content and the significant decrease in glutathione content and antioxidant enzyme activities indicated that 1,3-dichloro-2-propanol-induced hepatic damage was mediated through oxidative stress, which caused a dose-dependent increase of hepatocellular apoptotic changes in the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay and immunohistochemical analysis for caspase-3. The phosphorylation of mitogen-activated protein kinases caused by 1,3-dichloro-2-propanol possibly involved in hepatocellular apoptotic changes in rat liver. Furthermore, 1,3-dichloro-2-propanol induced an inflammatory response through activation of nuclear factor-kappa B signaling that coincided with the induction of pro-inflammatory mediators or cytokines in a dose-dependent manner. Taken together, these results demonstrate that hepatotoxicity may be related to oxidative stress-mediated activation of mitogen-activated protein kinases and nuclear factor-kappa B-mediated inflammatory response.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea, Animal Medical Institute of Chonnam National University

References

  1. NTP. 1,3-Dichloro-2-propanol [CAS No. 96-23-1]. Review of toxicological literature, Research Triangle Park, NC. National Toxicology Program (NTP). 2005. Available from: URL: http://ntp.niehs.nih.gov/ntp/htdocs/chem_background/exsumpdf/dichloropropanol_508.pdf. (Accessed 17 April 2015).
  2. Nyman PJ, Diachenko GW, Perfetti GA. Survey of chloropropanols in soy sauces and related products. Food Addit Contam 2003; 20(10): 909-915. https://doi.org/10.1080/02652030310001603792
  3. Williams G, Leblanc JC, Setzer RW. Application of the margin of exposure (MoE) approach to substances in food that are genotoxic and carcinogenic: example: (CAS No. 96-23-1) 1,3-dichloro-2-propanol (DCP). Food Chem Toxicol 2010; 48 (S1): 57-62. https://doi.org/10.1016/j.fct.2009.10.038
  4. Jersey GC, Breslin WJ, Zeilke GJ. Subchronic toxicity of 1,3-dichloro-2-propanol in rats. Toxicologist 1991; 11: 353.
  5. Kim HY, Lee SB, Lim KT, Kim MK, Kim JC. subchronic inhalation toxicity study of 1,3-dichloro-2-propanol in rats. Ann Occup Hyg 2007; 51(7): 633-643. https://doi.org/10.1093/annhyg/mem041
  6. Andres S, Appel KE, Lampen A. Toxicology, occurrence and risk characterisation of the chloropropanols in food: 2-monochloro-1,3-propanediol, 1,3-dichloro-2-propanol and 2,3-dichloro-1-propanol. Food Chem Toxicol 2013; 58: 467-478. https://doi.org/10.1016/j.fct.2013.05.024
  7. Shiozaki T, Mizobata Y, Sugimoto H, Yoshioka T, Sugimoto T. Fulminant hepatitis following exposure to dichlorohydrin--report of two cases. Hum Exp Toxicol 1994; 13(4): 267-270. https://doi.org/10.1177/096032719401300408
  8. RTECS. 1,3-Dichloro-2-propanol: toxicity, carcinogenicity, tumorigenicity, mutagenicity, and teratogenicity. Registry of Toxic Effects of Chemical Substances (RTECS) No. UB1400000. 2000. Available from: URL: http://www.cdc.gov/niosh-rtecs/ub155cc0. html (accessed 17 April 2015).
  9. Lee JC, Shin IS, Ahn TH, Kim KH, Moon C, Kim SH, Shin DH, Park SC, Kim YB, Kim JC. Developmental toxic potential of 1,3-dichloro-2-propanol in Sprague-Dawley rats. Regul Toxicol Pharmacol 2009; 53(1): 63-69. https://doi.org/10.1016/j.yrtph.2008.11.001
  10. Lu J, Huang G, Hu S, Wang Z, Guan S. 1,3-Dichloro-2-propanol induced hyperlipidemia in C57BL/6J mice via AMPK signaling pathway. Food Chem Toxicol 2014; 64: 403-409. https://doi.org/10.1016/j.fct.2013.11.049
  11. Hammond AH, Garle MJ, Fry JR. Toxicity of dichloropropanols in rat hepatocyte cultues. Environ Toxicol Pharmacol 1996; 1(1): 39-43. https://doi.org/10.1016/1382-6689(95)00007-0
  12. Hammond AH, Fry JR. Involvement of cytochrome P4502E1 in the toxicity of dichloropropanol to rat hepatocyte cultures. Toxicology 1997; 118(2-3): 171-179. https://doi.org/10.1016/S0300-483X(96)03604-9
  13. Katoh T, Haratake J, Nakano S, Kikuchi M, Yoshikawa M, Arashidani K. Dose-dependent effects of dichloropropanol on liver histology and lipid peroxidation in rats. Ind Health 1998; 36(4): 318-323. https://doi.org/10.2486/indhealth.36.318
  14. Hammond AH, Fry JR. Effect of cyanamide on toxicity and glutathione depletion in rat hepatocyte cultures: differences between two dichloropropanol isomers. Chem Biol Interact 1999; 122(2): 107-115. https://doi.org/10.1016/S0009-2797(99)00118-0
  15. Kuroda Y, Fueta Y, Kohshi K, Nakao H, Imai H, Katoh T. Toxicity of dichloropropanols. J UOEH 2002; 24(3): 271-280. https://doi.org/10.7888/juoeh.24.271
  16. Park SY, Kim YH, Kim YH, Lee SJ. 1,3-Dichloro-2-propanol induces apoptosis via both calcium and ROS in mouse melanoma cells. Biotechnol Lett 2010; 32(1): 45-51. https://doi.org/10.1007/s10529-009-0117-z
  17. Lee IC, Ko JW, Lee SM, Kim SH, Shin IS, Moon OS, Yoon WK, Kim HC, Kim JC. Time-course and molecular mechanism of hepatotoxicity induced by 1,3-dichloro-2-propanol in rats. Environ Toxicol Pharmacol 2015; 40(1): 191-198. https://doi.org/10.1016/j.etap.2015.06.011
  18. Haratake J, Furuta A, Iwasa T, Wakasugi C, Imazu K. Submassive hepatic necrosis induced by dichloropropanol. Liver 1993; 13(3): 123-129. https://doi.org/10.1111/j.1600-0676.1993.tb00618.x
  19. Moron MS, Depierre JW, Mannervik B. Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta 1979; 582(1): 67-78. https://doi.org/10.1016/0304-4165(79)90289-7
  20. Berton TR, Conti CJ, Mitchell DL, Aldaz CM, Lubet RA, Fischer SM. The effect of vitamin E acetate on ultraviolet-induced mouse skin carcinogenesis. Mol Carcinog 1998; 23(3): 175-184. https://doi.org/10.1002/(SICI)1098-2744(199811)23:3<175::AID-MC6>3.0.CO;2-B
  21. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951; 193(1): 265-275.
  22. Kim JW, Park S, Lim CW, Lee K, Kim B. The role of air pollutants in initiating liver disease. Toxicol Res 2014; 30(2): 65-70. https://doi.org/10.5487/TR.2014.30.2.065
  23. Seo Y, Bazarsad D, Choe SY. Effect of acer tegmentosum maxim. Extracts on acute hepatitis and fatty liver in rats. J Biomed Res 2012; 13(2): 165-170. https://doi.org/10.12729/jbr.2012.13.2.165
  24. Tak PP, Firestein GS. NF-kappaB: a key role in inflammatory diseases. J Clin Invest 2001; 107(1): 7-11. https://doi.org/10.1172/JCI11830
  25. Leclercq IA, Farrell GC, Sempoux C, dela Pena A, Horsmans Y. Curcumin inhibits NF-kappaB activation and reduces the severity of experimental steatohepatitis in mice. J Hepatol 2004; 41(6): 926-934. https://doi.org/10.1016/j.jhep.2004.08.010
  26. Reyes-Gordillo K, Segovia J, Shibayama M, Vergara P, Moreno MG, Muriel P. Curcumin protects against acute liver damage in the rat by inhibiting NF-kappaB, proinflammatory cytokines production and oxidative stress. Biochim Biophys Acta 2007; 1770(6): 989-996. https://doi.org/10.1016/j.bbagen.2007.02.004
  27. Luedde T, Schwabe RF. NF-${\kappa}B$ in the liver--linking injury, fibrosis and hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2011; 8(2): 108-118. https://doi.org/10.1038/nrgastro.2010.213

Cited by

  1. Induction of p53-Independent Apoptosis and G1 Cell Cycle Arrest by Fucoidan in HCT116 Human Colorectal Carcinoma Cells vol.15, pp.6, 2017, https://doi.org/10.3390/md15060154
  2. Licochalcone E protects against carbon tetrachloride-induced liver toxicity by activating peroxisome proliferator-activated receptor gamma vol.16, pp.4, 2016, https://doi.org/10.3892/mmr.2017.7268
  3. Schisandrin A suppresses lipopolysaccharide-induced inflammation and oxidative stress in RAW 264.7 macrophages by suppressing the NF-κB, MAPKs and PI3K/Akt pathways and activating Nrf2/HO-1 sign vol.41, pp.1, 2016, https://doi.org/10.3892/ijmm.2017.3209
  4. Spermidine Protects against Oxidative Stress in Inflammation Models Using Macrophages and Zebrafish vol.26, pp.2, 2016, https://doi.org/10.4062/biomolther.2016.272
  5. Preventive Effect of Garlic Oil and Its Organosulfur Component Diallyl-Disulfide on Cigarette Smoke-Induced Airway Inflammation in Mice vol.10, pp.11, 2018, https://doi.org/10.3390/nu10111659
  6. Extracts from Erythronium japonicum and Corylopsis coreana Uyeki reduce 1,3-dichloro-2-propanol-mediated oxidative stress in human hepatic cells vol.28, pp.1, 2019, https://doi.org/10.1007/s10068-018-0445-7
  7. Caffeic acid abrogates 1,3-dichloro-2-propanol-induced hepatotoxicity by upregulating nuclear erythroid-related factor 2 and downregulating nuclear factor-kappa B vol.38, pp.9, 2016, https://doi.org/10.1177/0960327119851257
  8. Glutathione Induced Immune-Stimulatory Activity by Promoting M1-Like Macrophages Polarization via Potential ROS Scavenging Capacity vol.8, pp.9, 2016, https://doi.org/10.3390/antiox8090413