DOI QR코드

DOI QR Code

Application of Best Estimate Approach for Modelling of QUENCH-03 and QUENCH-06 Experiments

  • Kaliatka, Tadas (Laboratory of Nuclear Installation Safety, Lithuanian Energy Institute) ;
  • Kaliatka, Algirdas (Laboratory of Nuclear Installation Safety, Lithuanian Energy Institute) ;
  • Vileiniskis, Virginijus (Laboratory of Nuclear Installation Safety, Lithuanian Energy Institute)
  • Received : 2015.07.03
  • Accepted : 2015.12.14
  • Published : 2016.04.25

Abstract

One of the important severe accident management measures in the Light Water Reactors is water injection to the reactor core. The related phenomena are investigated by performing experiments and computer simulations. One of the most widely known is the QUENCH test-program. A number of analyses on QUENCH tests have also been performed by different computer codes for code validation and improvements. Unfortunately, any deterministic computer simulation is not free from the uncertainties. To receive the realistic calculation results, the best estimate computer codes should be used for the calculation with combination of uncertainty and sensitivity analysis of calculation results. In this article, the QUENCH-03 and QUENCH-06 experiments are modelled using ASTEC and RELAP/SCDAPSIM codes. For the uncertainty and sensitivity analysis, SUSA3.5 and SUNSET tools were used. The article demonstrates that applying the best estimate approach, it is possible to develop basic QUENCH input deck and to develop the two sets of input parameters, covering maximal and minimal ranges of uncertainties. These allow simulating different (but with the same nature) tests, receiving calculation results with the evaluated range of uncertainties.

Keywords

References

  1. Karlsruhe Institute of Technology [Internet]. QUENCH Program at KIT - QUENCH test matrix, [cited 2014 Oct 14]. Available from: http://quench.forschung.kit.edu/.
  2. P. Hofmann, C. Homann, W. Leiling, A. Miassoedov, D. Piel, G. Schanz, L. Schmidt, L. Sepold, M. Steinbruck, Experimental and Calculational Results of the Experiments QUENCH-02 and QUENCH-03 [Internet]. Wissenschaftliche Berichte, FZKA 6295, Institut fur Materialforschung, Institut fur Reaktorsicherheit, Projekt Nukleare Sicherheitsforschung, Forschungszentrum Karlsruhe, 2000 [cited 2015 Jul 1]. Available from: http://bibliothek.fzk.de/zb/abstracts/6295.htm.
  3. J. Duspiva, Conclusions from Quench-03 test analyses with ICAR-2 and MELCOR Codes, Proceedings of the 11th International Quench Workshop, Karlsruhe, (Germany), 2005 Oct 25-27.
  4. P. Kruse, K.M. Koch, Simulation of the fuel rod bundle test QUENCH-03 using the integral code ASTEC V2, Proceedings of the 8th International Topical Meeting on Nuclear Thermal-Hydraulics, Operation and Safety (NUTHOS-8), Shanghai (China), 2010 Oct 10-14, Paper N8P0058.
  5. W. Hering, Ch. Homann, J.-S. Lamy, Comparison Report on the Blind Phase of the OECD International Standard Problem No. 45 exercise QUENCH-06 [Internet]. Wissenschaftliche Berichte, FZKA-6677, 2002 [cited 2015 Jul 1]. Available from: http://digbib.ubka.uni-karlsruhe.de/volltexte/fzk/6677/6677.pdf.
  6. S. Sadek, S. Spalj, D. Grgic, RELAP5/SCDAPSIM Analysis of the QUENCH-06 Experiment. FER-ZVNE/SA/DA-IR01/03-0, Zagreb, 2003.
  7. H. Madokoro, K. Okamoto, Y. Ishiwatari, SCDAP model improvement with QUENCH-06 analysis, Proceedings of the 2014 22th International Conference on Nuclear Engineering (ICONE 212), Prague (Czech Republic), 2014 Jul 7-11, ASME, p. 1-8.
  8. Karlsruhe Institute of Technology, QUENCH Program at KIT - Reports QUENCH [Internet]. [cited 2014 Oct 16]. Available from: http://quench.forschung.kit.edu.
  9. W. Hering, Ch. Homann, J.S. Lamy, A. Miassoedov, G. Schanz, L. Sepold, M. Steinbruck, Comparison and Interpretation Report of the OECD International Standard Problem No. 45 Exercise (QUENCH-06), Wissenschaftliche Berichte, FZKA-6722, 2002.
  10. M. Allison, R.J. Wagner, RELAP5/SCDAPSIM/MOD3.2 (am+) Input Manual Supplemental [Internet]. Innovative Systems Software, LLC, 2001 [cited 2015 Jul 1]. Available from: www.relap.com.
  11. A.K. Trivedi, C. Allison, A. Khanna, P. Munshi, RELAP5/SCDAPSIM/MOD3.5 analysis of the influence of water addition during a core isolation event in a BWR, Nucl. Eng. Des. 273 (2014) 298-303. https://doi.org/10.1016/j.nucengdes.2014.03.016
  12. IAEA-TECDOC-1332 Safety margins of operating reactors, Analysis of Uncertainties and Implications for Decision Making, IAEA, Vienna (Austria), 2003.
  13. W. Ambrosini, R. Bovalini, F. D'Auria, Evaluation of accuracy of thermal-hydraulic code calculations, Energ. Nucl. 7 (1990) 5-16.
  14. F. D'Auria, M. Leonardi, R. Pochard, Methodology for the Evaluation of Thermalhydraulic Codes Accuracy, Proceedings of the International Conference New Trends in Nuclear System Thermalhydraulics Pisa, Italy, May-June, 1994, pp. 467-477.
  15. F. D'Auria, W. Giannotti, Development of a code with the capability of internal assessment of uncertainty, Nucl. Technol. 131 (2000) 159-196. https://doi.org/10.13182/NT00-5
  16. F. D'Auria, B. Mavko, A. Prosek, Fast Fourier Transform Based Method for Quantitative Assessment of Code Predictions of Experimental Data, Proceedings of the International Meeting on "Best-Estimate" Methods in Nuclear Installation Safety Analysis (BE-2000), November 12-16, 2000. Washington, D.C.
  17. F.D. D'Auria, G.M. Galassi, M. Leonardi, M.R. Galetti, Application of Fast Fourier Transform Method to Evaluate the Accuracy of SBLOCA Data Base, Proceedings of NURETH-8, 1997, pp. 358-366. Kyoto, Japan.
  18. M. Kloos, E. Hofer, SUSA Version 3.2. User's Guide and Tutorial, GRS Garching, 1999.
  19. H.G. Glaeser, Uncertainty Evaluation of Thermal-hydraulic Code Results, Proceedings International Meeting on "Best-Estimate" Methods in Nuclear Installation Safety Analysis (BE-2000), Washington (DC), Nov 2000.
  20. H.G. Glaeser, GRS Method for Uncertainty and Sensitivity Evaluation of Codes Results: Description, Characteristics and Applications, IAEA Regional Training Course on the Use of system Analysis Codes for Accident Analysis, Zagreb (Croatia), 2000.
  21. B.E. Boyack, I. Catton, R.B. Duffey, P. Griffith, K.R. Katsma, G.S. Lellouche, S. Levy, U.S. Rohatgi, G.E. Wilson, W. Wulff, N. Zuber, Quantifying reactor safety margins. Part 1: an overview of the code scaling, applicability, and uncertainty evaluation methodology, Nucl. Eng. Des. 119 (1990) 1-15. https://doi.org/10.1016/0029-5493(90)90071-5
  22. G.E. Wilson, B.E. Boyack, I. Catton, R.B. Duffey, P. Griffith, K.R. Katsma, G.S. Lellouche, S. Levy, U.S. Rohatgi, W. Wulff, N. Zuber, Quantifying reactor safety margins. Part 2: characterization of important contributors to uncertainty, Nucl. Eng. Des. 119 (1990) 17-31. https://doi.org/10.1016/0029-5493(90)90072-6
  23. A. Crecy, CIRCE: a Tool for Calculating the Uncertainties of the Constitutive Relationships of CATHARE 2, Proceedings of NURETH-8, 1997, pp. 349-357. Kyoto, Japan.
  24. E. Chojnacki, A. Ounsy, Application of the IPSN Method for Uncertainty and Sensitivity Analysis to the CATHAR-2 Code for a SBLOCA Transient (LSTF SB-CL-18), Proceedings of NURETH-8, 1997, pp. 340-348.
  25. H.G. Glaeser, T. Wickett, E. Chojnacki, F. D'Auria, C.L. Perez, OECD/CSNI Uncertainty Methods Study for "Best Estimate" Analysis, Proceedings, International Meeting on "Best-Estimate" Methods in Nuclear Installation Safety Analysis (BE-2000), November 12-16, 2000. Washington, D.C.
  26. E. Chojnacki, J. Baccou, SUNSET V_2011_06_07 Theory Manual and User Guide, DPAM-SEMIC-2011-225, IRSN, 2011. Technical Report.
  27. S.S. Wilks, Statistical prediction with special reference to the problem of tolerance limits, Ann. Math. Statist. 13 (1942) 400-409. https://doi.org/10.1214/aoms/1177731537
  28. J.H. Spencer, D. Novog, J.K. Hohorst, C.M. Allison, Assessment of New Modeling in RELAP/SCDAPSIM Using Experimental Results from the Quench Program, Proceedings of ICAPP 2011, Nice (France), 2011 May 2-5, Paper 11081.
  29. J.P. van Dorsselaere, C. Seropian, P. Chatelard, F. Jacq, J. Fleurot, P. Giordano, N. Reinke, B. Schwinges, H.J. Allelein, W. Luther, The ASTEC Integral Code for Severe Accident Simulation, Nucl. Technol. 165 (2009) 293-307. https://doi.org/10.13182/NT09-A4102
  30. A. Kaliatka, M. Povilaitis, E. Urbonavicius, T. Kaliatka, Uncertainty and Sensitivity Analysis of Quench Experiments Using ASTEC and RELAP/SCDAPSIM Codes, Proceedings of the 10th International Topical Meeting on Nuclear Thermal-Hydraulics, Operation and Safety (NUTHOS-10), Okinawa (Japan), 2014 Dec 14-18, p. 1-15.
  31. P. Kruse, T. Brahler, M.K. Koch, Validation of ASTEC core degradation and containment models, Nucl. Eng. Des. 272 (2014) 173-182. https://doi.org/10.1016/j.nucengdes.2014.01.012
  32. E.W. Coryell, S.A. Chavez, K.L. Davis, M.H. Mortensen, Design Report: SCDAP/RELAP5 Reflood Oxidation Model [Internet]. EGG-RAAM-10307, Oct 1992 [cited 2015 Jul 1]. Available from: http://www.osti.gov/scitech/servlets/purl/6844081-R2rvEf/.
  33. P. Chatelard, ASTEC V2 Code: ICARE Physical Modelling [Internet]. DPAM-SEMCA-2009-148, IRSN, 2009 [cited 2015 Jul 1]. Available from: http://www.sar-net.eu/.
  34. H.M. Chung, T.F. Kassner, Embrittlement Criteria for Zircaloy Fuel Cladding Applicable to Accident Situations in Light-Water Reactors. Summary Report, January 1981. NUREG/CR71344, ANL77948.
  35. X. He, H. Yu, G. Jiang, Reflood Oxidation Model Based on Reaction-diffusion Equations, 2010, pp. 981-990. Proceedings of ICONE-18, Xi'an, China, Paper No. ICON-18-30030.