DOI QR코드

DOI QR Code

Microwave Heating Characteristics of Magnetite Ore

  • Rajavaram, Ramaraghavulu (Department of Materials Science and Engineering, Korea University) ;
  • Lee, Jaehong (Department of Materials Science and Engineering, Korea University) ;
  • Oh, Joon Seok (Department of Materials Science and Engineering, Korea University) ;
  • Kim, Han Gyeol (Department of Materials Science and Engineering, Korea University) ;
  • Lee, Joonho (Department of Materials Science and Engineering, Korea University)
  • Received : 2016.01.18
  • Accepted : 2016.05.30
  • Published : 2016.11.20

Abstract

The heating characteristics of magnetite ore under microwave irradiation were investigated as a function of incident microwave power, particle size, and magnetite ore mass. The results showed that the heating rate of magnetite ore is highly dependent on microwave power and magnetite ore mass. The maximum heating rate was obtained at a microwave irradiation power of 1.70 kW with a mass of 25 g and particle size between $53-75{\mu}m$. The volumetric heating rate of magnetite ore was investigated by measuring the temperature at different depths during microwave irradiation. Microwave irradiation resulted in modification of the microstructure of the magnetite ore, but new phases such as FeO or $Fe_2O_3$ were not formed. In addition, the crystal size decreased from 115 nm to 63 nm after microwave irradiation up to 1573 K.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF), Korea Small and Medium Business Administration, Ministry of Trade, industry & Energy (MI)

References

  1. United Nations, Framework Convention on Climate Change, Adoption of the Paris Agreement, http://www.cop21.gouv.fr/en (accessed May 30, 2016).
  2. Republic of Korea, Intended Nationally Determined Contribution, http://www4.unfcc.int/submission/INDC (accessed May 30, 2016).
  3. Greenhouse Gas Inventory & Research Center of Korea, GHG Statistics of Korea, http://www.gir.go.kr/ (accessed May 30, 2016).
  4. Ulcos, Hisarna Smelter Technology, http://www.ulcos.org/en/research/isarna.php (accessed May 30, 2016).
  5. Course 50, Technologies to Reduce $CO_2$ Emissions, http://www.jisf.or.jp/course50/technology01/(accessed May 30, 2016).
  6. J. Cheng, R. Roy, and D. Agrawal, Mat. Res. Innovat. 5, 170 (2002). https://doi.org/10.1007/s10019-002-8642-6
  7. M. Hotta, M. Hayashi, A. Nishikata, and K. Nagatha, ISIJ Int. 49, 1443 (2009). https://doi.org/10.2355/isijinternational.49.1443
  8. N. Standish, H. Worner, and G. Gupta, J. Microw. Power Electromagn. Energy 25, 75 (1990). https://doi.org/10.1080/08327823.1990.11688114
  9. N. Standish and H. Worner, J. Microw. Power Electromagn. Energy 25, 177 (1990). https://doi.org/10.1080/08327823.1990.11688126
  10. N. Standish and Pramusanto, ISIJ Int. 31, 11 (1991). https://doi.org/10.2355/isijinternational.31.11
  11. N. Standish and W. Huang, ISIJ Int. 31, 241 (1991). https://doi.org/10.2355/isijinternational.31.241
  12. K. Ishizaki, K. Nagata, and T. Hayashi, ISIJ Int. 47, 817 (2007). https://doi.org/10.2355/isijinternational.47.817
  13. K. Kashimura, K. Nagata, and M. Sato, Mater. Trans. 51, 1847 (2010). https://doi.org/10.2320/matertrans.M2010026
  14. K. Hara and M. Hayashi, J. Microw. Power Electromagn. Energy 45, 137 (2011). https://doi.org/10.1080/08327823.2011.11689808
  15. K. Kashimura, M. Sato, M. Hotta, D. K. Agrawal, K. Nagata, N. Shinohara, et al., Mat. Sci. Eng. A 556, 979 (2012).
  16. E. R. Castro, M. B. Mourao, and L. A. Jermolovicius, Steel Res. Int. 83, 131 (2012). https://doi.org/10.1002/srin.201100186
  17. N. Sabelstrom, M. Hayashi, Y. Yokoyama, T. Watanabe, and K. Nagata, Steel Res. Int. 84, 975 (2013).
  18. K. Morita, M. Guo, Y. Miyazaki, and N. Sano, ISIJ Int. 41, 716 (2001). https://doi.org/10.2355/isijinternational.41.716
  19. N. Standish, H. K. Worner, and D. Y. Obuchowski, Powder Technol. 66, 225 (1991). https://doi.org/10.1016/0032-5910(91)80034-G
  20. M. Hayashi, Y. Yokoyama, and K. Nagata, J. Microw. Power Electromagn. Energy 44, 198 (2010). https://doi.org/10.1080/08327823.2010.11689788
  21. N. Yoshikawa, Z. Cao, D. Louzguin, G. Xie, and S. Taniguchi, J. Mater. Res. 24, 1741 (2009). https://doi.org/10.1557/jmr.2009.0192
  22. N. Yoshikawa, G. Xie, Z. Cao, and D. V. Louzguine, J. Eur. Ceram. Sco. 32, 419 (2012). https://doi.org/10.1016/j.jeurceramsoc.2011.08.028
  23. T. Kato, K. Kobayashi, N. Yoshikawa, and S. Taniguchi, J. Microw. Power Electromagn. Energy 45, 79 (2011). https://doi.org/10.1080/08327823.2011.11689801
  24. E. Kim, S. Cho, and J. Lee, Met. Mater. Int. 15, 1033 (2009). https://doi.org/10.1007/s12540-009-1033-4
  25. T. Kim and J. Lee, Mater. Trans. 52, 2233 (2011). https://doi.org/10.2320/matertrans.M2011178
  26. J. B. Salsman, R. L. Williamson, W. K. Tolley, and D. A. Rice, Miner. Eng. 9, 43 (1996). https://doi.org/10.1016/0892-6875(95)00130-1
  27. K. I. Rybakov, V. E. Semenov, S. V. Eremeev, I. V. Plotnikov, and Y. V. Bykov, J. Appl. Phys. 99, 023506 (2006). https://doi.org/10.1063/1.2159078
  28. J. B. Ahn, D. Kim, S. Y. Yoon, and C. Choi, Korean J. Met. Mater. 54, 275 (2016). https://doi.org/10.3365/KJMM.2016.54.4.275
  29. Y. Noh and O. Song, Korean J. Met. Mater. 53, 214 (2015). https://doi.org/10.3365/KJMM.2014.53.3.214
  30. S. An, M. Shin, K. J. Sim, and J. Lee, Met. Mater. Int. 20, 351 (2014). https://doi.org/10.1007/s12540-014-2015-8

Cited by

  1. Segregation Charging Behavior of Ultra-Fine Iron Ore Briquette in Sinter Feed Bed: DEM Analysis vol.26, pp.8, 2020, https://doi.org/10.1007/s12540-019-00415-y
  2. Microwave heating improvement of asphalt mixtures through optimizing layer thickness of magnetite and limestone aggregates vol.273, pp.None, 2016, https://doi.org/10.1016/j.jclepro.2020.123090
  3. Effect of Microwave Pretreatment on Grindability of Lead-Zinc Ore vol.2021, pp.None, 2016, https://doi.org/10.1155/2021/4418684