DOI QR코드

DOI QR Code

Characteristics of Thermal Radiation Pastes Containing Graphite and Carbon Nanotube

흑연 및 탄소나노튜브 혼합 방열도료의 특성

  • Lee, Ji Hun (Department of Advanced Materials Engineering, Korea Polytechnic University) ;
  • Song, Man-Ho (Technical Research Institute, Hana Nano Tech) ;
  • Kang, Chan Hyoung (Department of Advanced Materials Engineering, Korea Polytechnic University)
  • 이지훈 (한국산업기술대학교 신소재공학과) ;
  • 송만호 ((주)하나나노텍 기술연구소) ;
  • 강찬형 (한국산업기술대학교 신소재공학과)
  • Received : 2016.04.04
  • Accepted : 2016.04.25
  • Published : 2016.04.30

Abstract

Thermal radiation pastes were prepared by dispersing carbon materials as fillers with a content of 1 weight percent in an acrylic resin. The kind of fillers was as follows; $25{\mu}m$ graphite, $45{\mu}m$ graphite, $15{\mu}m$ carbon nanotube(CNT), a 1:1 mixture of $25{\mu}m$ graphite and $15{\mu}m$ CNT, and a 1:1 mixture of $45{\mu}m$ graphite and $15{\mu}m$ CNT. Thermal emissivity was measured as 0.890 for the samples with graphite only, 0.893 for that with CNT only, and 0.892 for those containing both. After coating prepared pastes on a side of 0.4 mm thick aluminium plate and placing the plate over an opening of a box maintained at $92^{\circ}C$ with the coated side out, the temperatures on the uncoated side of the plates were measured. The samples containing graphite and CNT showed the lowest temperatures. The paste with mixed fillers was coated on the back side of the PCB of an LED module and thermal analysis was carried out using Thermal Transient Tester (T3ster) in a still air box. The thermal resistance of the module with coated PCB was measured as 14.34 K/W whereas that with uncoated PCB was 15.02 K/W. The structure function analysis of T3ster data revealed that the difference between junction and ambient temperatures was $13.8^{\circ}C$ for the coated case and $18.0^{\circ}C$ for the uncoated. From the infrared images of heated LED modules, the hottest-spot temperature of the module with coated PCB was lower than that of the uncoated one for a given period of LED operation.

Keywords

References

  1. A. Castellazzi, M. Honsberg-Riedl, G. Wachutka, Thermal characterization of power devices during transient operation, Microelectron. J., 37 (2006) 145-151. https://doi.org/10.1016/j.mejo.2005.02.123
  2. S. Garimella, A. S. Fleischer, J. Y. Murphy, A. Keshavarzi, R. Prasher, C. Patel, S. H. Bhavnani, R. Venkatasubramanian, R. Mahajan, Y. Joshi, B. Sammakia, B. A. Myers, L. Chorosinski, M. Baelmans, P. Sathyamurthy, Thermal challenges in nextgeneration electronic systems, IEEE Trans. Comp. Pack. Tech., 31 (2008) 801-813. https://doi.org/10.1109/TCAPT.2008.2001197
  3. A. Castellazzi, T. Funaki, T. Kimoto, T. Hikihara, Thermal instability effects in SiC power MOSFETs, Microelectron. Reliab., 52 (2012) 2414-2419. https://doi.org/10.1016/j.microrel.2012.06.096
  4. M. Riccio, A. Castellazzi, G. de Falco, A. Irace, Experimental analysis of electro-thermal instability in SiC power MOSFETs, Microelectron. Reliab., 53 (2013) 1739-1744. https://doi.org/10.1016/j.microrel.2013.07.014
  5. D. A. Jaworske, Optical and calorimetric evaluation of Z-93-P and other thermal control coatings, Thin Solid Films, 290-291 (1996) 278-282. https://doi.org/10.1016/S0040-6090(96)08969-9
  6. J. Yi, Y. X. D. He, Y. Sun, Y. Li, Electron beamphysical vapor deposition of SiC/$SiO_2$ high emissivity thin film, Appl. Surf. Sci., 253 (2007) 4361-4366. https://doi.org/10.1016/j.apsusc.2006.09.063
  7. H. Yu, G. Xu, X. Shen, X. Yan, C. Shao, C. Hu, Effects of size, shape and floatage of Cu particles on the low infrared emissivity coatings, Progr. Org. Coating., 66 (2009) 161-166. https://doi.org/10.1016/j.porgcoat.2009.07.002
  8. J.-S. Roh, J.-S. Ahn, B.-J. Kim, H.-Y. Jeon, S.-K. Seo, S. H. Kim, S.-W. Lee, Thermal emissivity changes as a function of degree of flakes alignment on the graphite surfaces, J. Kor. Inst. Surf. Eng., 42 (2009) 95-101. https://doi.org/10.5695/JKISE.2009.42.2.095
  9. W.-Y. Eom, J.-S. Roh, S.-K. Seo, J.-S. Ahn, D.-S. Kang, S. H. Kim, Thermal emission effect of electronic parts using carbon materials, Kor. J. Mater. Res., 20 (2010) 204-209. https://doi.org/10.3740/MRSK.2010.20.4.204
  10. H. Miyagawa, M. J. Rich, L. T. Drzal, Thermophysical properties of epoxy nanocomposites reinforced by carbon nanotubes and vapor grown carbon fibers, Thermochim. Acta, 442 (2006) 67-73. https://doi.org/10.1016/j.tca.2006.01.016
  11. K. Saeed, S.-Y. Park, H.-J. Lee, J.-B. Back, W.-S. Huh, Preparation of electrospun nanofibers of carbon nanotube/polycaprolactone nanocomposite, Polymer, 47 (2006) 8019-8025. https://doi.org/10.1016/j.polymer.2006.09.012
  12. J. S. Jeong, S. Y. Jeon, T. Y. Lee, J. H. Park, J. H. Shin, P. S. Alegaonkar, A. S. Berdinsky, J. B. Yoo, Fabrication of MWNTs/nylon conductive composite nanofibers by electrospinning, Diamond & Relat. Mater., 15 (2006) 1839-1843. https://doi.org/10.1016/j.diamond.2006.08.026
  13. S. Bellayer, J. W. Gilman, S. S. Rahatekar, S. Bourbigot, X. Flambard, L. M. Hanssen, H. Guo, S. Kumar, Characterization of SWCNT and PAN/ SWCNT films, Carbon, 45 (2007) 2417-2423. https://doi.org/10.1016/j.carbon.2007.06.057
  14. M. V. Jose, B. W. Steinert, V. Thomas, D. R. Dean, M. A. Abdalla, G. Price, G. M. Janowski, Morphology and mechanical properties of nylon 6/MWNT nanofibers, Polymer, 48 (2007) 1096-1104. https://doi.org/10.1016/j.polymer.2006.12.023
  15. H. Ishida, S. Rimdusit, Very high thermal conductivity obtained by boron nitride-filled polybenzoxazine, Thermochim. Acta, 320 (1998) 177-186. https://doi.org/10.1016/S0040-6031(98)00463-8
  16. W. Zhou, S. Qi, H. Li. S. Shao, Study on insulating thermal conductive BN/HDPE composites, Thermochim. Acta, 452 (2007) 36-42. https://doi.org/10.1016/j.tca.2006.10.018
  17. W. Zhou, S. Qi, Q. An, H. Zhao, N. Liu, Thermal conductivity of boron nitride reinforced polyethylene composites, Mater. Res. Bull., 42 (2007) 1863-1873. https://doi.org/10.1016/j.materresbull.2006.11.047
  18. S. Yu, P. Hing, X. Hu, Thermal conductivity of polystyrene-aluminium nitride composite, Composites: Part A, 33 (2002) 289-292. https://doi.org/10.1016/S1359-835X(01)00107-5
  19. S. -H. Xie, B. -K. Zhu, J. -B. Li, X. -Z. Wei, Z. -K. Xu, Preparation and properties of polyimide/aluminium nitride composites, Polymer Testing, 23 (2004) 797-801. https://doi.org/10.1016/j.polymertesting.2004.03.005
  20. B. Weidenfeller, M. Hofer, F. R. Schilling, Thermal conductivity, thermal diffusivity, and specific heat capacity of particle filled polypropylene, Composites: Part A, 35 (2004) 423-429. https://doi.org/10.1016/j.compositesa.2003.11.005
  21. G. -W. Lee, M. Park, J. Kim, J. I. Lee, H. G. Yoon, Enhanced thermal conductivity of polymer composites filled with hybrid filler, Composites: Part A, 37 (2006) 727-734. https://doi.org/10.1016/j.compositesa.2005.07.006
  22. http://www.mentor.com/products/mechanical/micred/t3ster/?sfm=auto_suggest, Mentor Graphics T3ster, 2015. 09. 12.
  23. M. Y. Yoon, J. H. Im, C. H. Kang, Heat spreading properties of CVD diamond coated Al heat sink, J. Kor. Inst. Surf. Eng., 48 (2015) 297-302. https://doi.org/10.5695/JKISE.2015.48.6.297
  24. http://guideinfrared.com/Plus/m_default/Cms/docDetail.php?ID=60, Timage IR Pro+, 2015. 09. 12.