DOI QR코드

DOI QR Code

A Case Study about Counting Uncertainty of Radioactive Iodine (131I) in Public Waters by Using Gamma Spectrometry

감마분광분석을 이용한 환경 중 방사성요오드(131I)의 측정 불확도에 관한 사례 연구

  • Cho, Yoonhae (Geum River Environment Research Center, National Institute of Environmental Research) ;
  • Seol, Bitna (Geum River Environment Research Center, National Institute of Environmental Research) ;
  • Min, Kyoung Ok (Geum River Environment Research Center, National Institute of Environmental Research) ;
  • Kim, Wan Suk (Geum River Environment Research Center, National Institute of Environmental Research) ;
  • Lee, Junbae (Geum River Environment Research Center, National Institute of Environmental Research) ;
  • Lee, Soohyung (Geum River Environment Research Center, National Institute of Environmental Research)
  • 조윤해 (국립환경과학원 금강물환경연구소) ;
  • 설빛나 (국립환경과학원 금강물환경연구소) ;
  • 민경옥 (국립환경과학원 금강물환경연구소) ;
  • 김완석 (국립환경과학원 금강물환경연구소) ;
  • 이준배 (국립환경과학원 금강물환경연구소) ;
  • 이수형 (국립환경과학원 금강물환경연구소)
  • Received : 2015.10.05
  • Accepted : 2016.01.25
  • Published : 2016.01.31

Abstract

The radioactive iodine ($^{131}I$) presents in the environment through the excrete process of nuclear medicine patients. In the detecting of low level of $^{131}I$ in the public water, the counting uncertainty has an effect on the accuracy and reliability of detecting $^{131}I$ radioactivity concentration. In this study, the contribution of sample amount, radioactivity concentration and counting time to the uncertainty was investigated in the case of public water sample. Sampling points are public water and the effluents of a sewage treatment plant at Sapkyocheon stream, Geumgang river. In each point, 1, 10 and 20 L of liquid samples were collected and prepared by evaporation method. The HPGe (High Purity Germanium) detector was used to detect and analyze emitted gamma-ray from samples. The radioactivity concentration of $^{131}I$ were in the range of 0.03 to 1.8 Bq/L. The comparison of the counting uncertainty of the sample amount, 1 L sample is unable to verify the existence of the $^{131}I$ under 0.5 Bq/L radioactivity concentration. Considering the short half-life of $^{131}I$ (8.03 days), a method for measuring 1 L sample was used. However comparing the detecting and preparing time of 1, 10 L respectively, detecting 10 L sample would be an appropriate method to distinguish $^{131}I$ concentration in the public water.

환경에 존재하는 인공방사성핵종 중 방사성요오드($^{131}I$)는 주로 갑상선질환의 치료에 사용되며 환자의 배출과정을 통해 체외로 방출된다. 붕괴가 채 끝나지 않은 $^{131}I$는 환경으로 방출되어 공공수역에서 검출될 수 있다. 본 연구는 공공수역에서 검출된 $^{131}I$ 방사능 결과의 정확도 및 신뢰도에 영향을 미치는 불확도 중 계측 과정에서 발생하는 불확도에 대하여 금강수계의 실제 사례를 조사하였다. 시료는 금강권역 삽교천 수계의 하천수 및 그 상류의 하수처리장 방류수를 대상으로 하였으며, 시료량에 따른 불확도를 확인하기 위하여 각 지점의 시료를 1, 10, 20 L로 채수하였다. 채취한 시료는 시료량에 따라 전 처리를 거친 후 1 L 마리넬리 비커에 충전하여 HPGe (High Purity Germanium) 감마선 검출기를 이용하여 10,000초 단위로 계측 분석하여 계측시간 및 방사능에 따른 측정불확도를 비교하였다. 각 지점의 방사능 농도는 0.03~1.8 Bq/L로, 채취시점에 따라 차이가 있는 것으로 나타났다. $^{131}I$의 방사능 농도가 0.3 Bq/L 수준인 경우 시료량이 1 L이면 약 80,000초 계측 시까지 핵종의 존재여부를 판단하지 못하는 경우가 발생하였으나, 같은 조건에서 시료량을 증가시켜 계측한 경우 10,000초 이상의 계측시간부터 불확도 10% 범위에 포함되는 것으로 나타났다. $^{131}I$의 짧은 반감기를 고려하여 즉시 계측이 가능한 1 L 생시료 계측 방법을 사용할 수 있으나, 불확도 수준과 전처리 및 계측에 소요되는 시간을 비교하였을 때, 10 L 시료의 계측을 통해 높은 신뢰도의 측정 결과를 얻을 수 있는 합리적인 방법이라고 판단되었다.

Keywords

References

  1. Carolan, J. V., Hughes, C. E. and Hoffmann, E. L., "Dose assessment for marine biota and humans from discharge of $^{131}I$ to the marine environment and uptake by algae in Sydney, Australia," J. Environ. Radioactiv., 102(10), 953-963(2011). https://doi.org/10.1016/j.jenvrad.2009.10.002
  2. UNSCEAR (United Nations Scientific Committee on the Effect of Atomic Radiation), Source and effect of ionizing radiation, United Nations publication, pp. 1-14(2000).
  3. Chattopadhyay, S. and Das, S. S., "Recovery of $^{131}I$ from alkaline solution of n-irradiate tellurium target using a tiny Dowex-1 column," Appl. Radiat. Isot., 68(10), 1967-1969 (2010). https://doi.org/10.1016/j.apradiso.2010.04.033
  4. IAEA Handbook of Nuclear Data for Safeguards, Cumulatice Fission Yields, http://www-nds.iaea.org/sgnucdat/c3.htm (2008).
  5. Bitar, A. Maghrabi, M. and Doubal, A. W., "Assessment of intake and internal dose from iodine-131 for exposed workers handling radiopharmaceutical products," Appl. Radiat. Isot., 82, 370-375(2013). https://doi.org/10.1016/j.apradiso.2013.09.011
  6. Kim, J. K., Survey on the status of radiation/RI utilization in 2012, Korean Association for Radiation Application, Ministry of Science, ICT and Future Planning, pp. 22-53 (2013).
  7. ICRP (International Commision for Radiation Protection), ICRP Publication 94: Release of patients after therapy with unsealed radionuclides, 34(2), 1-80(2004). https://doi.org/10.1016/j.icrp.2004.08.003
  8. Morita, T., Niwa, K., Fujimoto, K., Yamada, H., Nishiutch, K., Sakamoto, T., Godo, W., Taino, S., Hayashi, Y., Takeno, K., Nishigaki, T., Fujiwara, K., Aratake, H., Kamonoshita, S., Hashimoto, H., Kobayashi, T., Otosaka, S. and Imanaka, T., "Detection and activity of ioding-131 in brown algae collected in the Japanese coastal areas," Sci. Total Environ., 408, 3443-3447(2010). https://doi.org/10.1016/j.scitotenv.2010.04.001
  9. Ministry of Environment, Management plan of monitoring program for radioactive materials in public waters, Ministry of Environment notification No. 2015-226(2015).
  10. Kim, J., Jung, H., An, M., Hong, J. K., Kang, Y., Kang, T. W., Cho, Y. H., Han, Y. U., Seol, B., Kim, W. and Kim, K., "Status of a national monitoring program for environmental radioacrivity and investigation of artificial radionuclides concentrations ($^{134}Cs$, $^{137}Cs$ and $^{131}I$) in rivers and lakes," Anal. Sci. Technol., 28(6), 377-384(2015). https://doi.org/10.5806/AST.2015.28.6.377
  11. Bakr, W. F. and Ebaid, Y. Y., "Quantification of uncertainties on gamma ray spectrometric measurement: A case study," J. Nucl. Radiat. Phys., 6(1&2), 55-67(2011).
  12. Ministry of Environment, Standard test method for water quality, Ministry of Environment notification No. 2014-76(2015).
  13. Michael, F., L'Annunziata, Handbook of radioactivity analysis, 3rd Edition, Academic press, Elsevier, pp. 353-360(2012).
  14. Gordon R. Gilmore, Practical gamma-ray spectrometry, 2nd Edition, John Wiley&Sons, Ltd, pp. 123-129(2008).
  15. Currie, L. A., "Limits for qualitative detection and quantitative determination," Am. Chem. Soc. Publ., 40(3), 586-596 (1968).
  16. IAEA (International Atomic Energy Agency), Quantifying uncertainty in nuclear analytical measurements, IAEA-TECDOC-1401, pp. 103-126(2004).
  17. Lee, W., Kwak, J. Y., Chung, K. H., Cho, Y. H., Kang, M. J., Kim, H. R., Cho, G. S. and Lee, C. W., "Counting uncertainty assessment in natural radioactivity analysis by gamma spectrometry," Korean Radioactiv. Waste. Soc., 334-335(2005).
  18. Ebaid, Y. Y., "On the use of reference materials in gamma ray spectrometric efficiency calibration for environmental samples," J. Radioanal. Nucl. Ch., 280(1), 21-25(2009). https://doi.org/10.1007/s10967-008-7377-2

Cited by

  1. The Distribution and Behavior of Medically-derived 131I in the Yeongsan River Basin vol.37, pp.4, 2018, https://doi.org/10.5338/KJEA.2018.37.4.33