DOI QR코드

DOI QR Code

Effect of ZnO and TiO2 Nanopaticles (NPs) on Microorganisms Growth in Activated Sludge

활성슬러지에서의 미생물 성장에 대한 ZnO와 TiO2 나노물질의 영향

  • Ha, Min Jeong (Graduate School of Water Resources, Sungkyunkwan University) ;
  • Lee, Yeo Eun (Graduate School of Water Resources, Sungkyunkwan University) ;
  • Jang, Am (Graduate School of Water Resources, Sungkyunkwan University)
  • 하민정 (성균관대학교 수자원전문대학원) ;
  • 이여은 (성균관대학교 수자원전문대학원) ;
  • 장암 (성균관대학교 수자원전문대학원)
  • Received : 2016.02.26
  • Accepted : 2016.03.09
  • Published : 2016.04.30

Abstract

Sewage treatment using microorganisms is affected by multiple factors such as microbial properties, characteristics of sewage and operating conditions, and nanoparticles inflow may cause negative effects on sewage treatment system especially on the system stability and efficiency. It was studied to assess the toxic effects of nanoparticles on microorganism growth. The activated sludge in the sewage treatment plant of university was cultured in the optimized medium for each strain. Bacillus (gram-positive), Pseudomonas and E.coli (gram-negative) in the activated sludge were selected as target microorganisms, and ZnO and $TiO_2$ were chosen as nanoparticles. For same concentration of nanoparticles, average growth inhibition rate of Bacillus was 60% or more, while that of Pseudomonas was less than 10%. The toxicity of nanoparticles was shown to be higher for gram-positive bacteria than gram-negative bacteria because of their differences on structure of cell wall, components of cell wall protein, physiology of cells and metabolism. ZnO affected 3 times more negative on the growth of microorganisms as compared to $TiO_2$. It was assumed that, therefore, toxicity of ZnO was found to be greater than $TiO_2$.

미생물을 이용한 하수처리의 경우 여러 요인(미생물 특성, 원수의 성상, 운전조건)의 영향을 받으며 복잡한 관계를 갖고 운영하게 되는데 이런 공정에 나노입자의 유입은 분명 공정의 안정성 및 효율성에 영향을 줄 것으로 판단된다. 본 연구에서는 교내 하수 플랜트에서 활성슬러지를 채취하여 각각의 균주에 최적화된 배지에 배양시킨 뒤, 배양된 미생물이 각각 나노물질과 나노이온 상태일 때 성장에 미치는 영향을 알아보았다. 활성슬러지에 존재하는 대표 미생물 중에 그람양성균인 Bacillus와 그람음성균인 Pseudomonas, E.coli를 대상 균주로 선택하여 ZnO, $TiO_2$ 두 가지 나노물질에 의한 독성 영향을 비교하였다. 동일한 농도의 나노물질에서 그람양성균인 Bacillus균의 평균 성장 저해율은 60% 이상이고, 그람음성균인 Pseudomonas의 경우는 평균 성장 저해율이 10% 미만으로 나타났다. 따라서 나노물질에 대한 독성은 그람양성균이 그람음성균보다 높은 것으로 보여지는데 그 이유는, 세포벽 구조, 세포벽 단백질 구성성분, 세포의 생리기능, 물질대사 등의 차이로 그람양성균이 나노물질에 훨씬 민감한 경향을 나타내기 때문인 것으로 보여진다. 그리고 ZnO와 $TiO_2$ 나노물질의 농도가 같을 때 미생물 성장에 미치는 영향은 ZnO가 평균적으로 3배 정도 높았는데 이것은 ZnO 나노물질의 독성이 $TiO_2$ 보다 크다고 볼 수 있다.

Keywords

References

  1. Hui, M., Xiong, Z., Yinguang, C., Hong, C. and Kun, L., "Response of Anaerobic Granular Sludge to a Shock Load of Zinc Oxide Nanoparticles during Biological Wastewater Treatment," Environ. Sci. Technol., 46(11), 5997-6003(2012). https://doi.org/10.1021/es300616a
  2. Makarand, A. P. and Parimal, A. P., "Investigation on Likely Effects of Ag, $TiO_2$, and ZnO Nanoparticles on Sewage Treatment," Bullet. Environ. Contam. Toxicol., 92, 109-114(2014). https://doi.org/10.1007/s00128-013-1141-1
  3. Alex, W., Paul, W., Lars, F., Kiril, H. and Natalie, G. "Titanium Dioxide Nanoparticles in Food and Personal Care Products," Environ. Sci. Technol., 46(4), 2242-2250(2012). https://doi.org/10.1021/es204168d
  4. Gregory, V. L., Kelvin, B. G., Simon, C. A. and Jamie, R. L., "Transformations of Nanomaterials in the Environment," Environ. Sci. Technol., 46(13), 6893-6899(2012). https://doi.org/10.1021/es300839e
  5. Guoqiang, L., Demin, W., Jianmin, W. and Cesar, M. "Effect of ZnO particles on activated sludge: Role of particle dissolution," Sci. Total Environ., 409(14), 2852-2857(2011). https://doi.org/10.1016/j.scitotenv.2011.03.022
  6. Natasha, M. F., Nicola, J. R., Simon, C. A., Graeme, E. B., Gerald, E. G. and Philip, S. C. "Comparative Toxicity of Nanoparticulate ZnO, Bulk ZnO, and $ZnCl_2$ to a Freshwater Microalga (Pseudokirchneriella subcapitata): The Importance of Particle Solubility," Environ. Sci. Technol., 41(24), 8484-8490(2007). https://doi.org/10.1021/es071445r
  7. Virender, K. S., "Aggregation and toxicity of titanium dioxide nanoparticles in aquatic environment-A Review," J. Environ. Sci. Health, Part A, 44(14), 1485-1495(2009). https://doi.org/10.1080/10934520903263231
  8. Thabitha, P. D. and Hwang, H.-M, "Effect of humic acids and sunlight on the cytotoxicity of engineered zinc oxide and titanium dioxide nanoparticles to a river bacterial assemblage," J. Environ. Sci., 25(9), 1925-1935(2013). https://doi.org/10.1016/S1001-0742(12)60271-X
  9. Sindhu, P. D., Punalur, J. S., Sudheer, K., Amitava, M. and Natrajan, C. "Toxic behavior of silver and zinc oxide nanoparticles on environmental microorganisms" J. Basic Microbiol., 54(9), 916-927(2014). https://doi.org/10.1002/jobm.201200316
  10. Emma, J., Im, W.-T., Kim, D.-H., Kim, M.-S., Kang, S.-T., Shin, H.-S. and Chae, S.-R. "Different susceptibilities of bacterial community to silver nanoparticles in wastewater treatment systems," J. Environ. Sci. Health, 49(6), 685-693(2014). https://doi.org/10.1080/10934529.2014.865454
  11. Liu, Y., Tourbin, M., Lachaize, S. and Guiraud, P., "Nanoparticles in wastewaters: Hazards, fate and remediation," Powder Technol., 255, 149-156(2014). https://doi.org/10.1016/j.powtec.2013.08.025
  12. Guy, A., Anat, L., Rachel, D., Nina, P., Yeshayahu, N., Rachel, L. and Aharon, G. "Enhanced Antibacterial Activity of Nanocrystalline ZnO Due to Increased ROS-Mediated Cell Injury," Adv. Funct. Mater., 19, 842-852(2009). https://doi.org/10.1002/adfm.200801081
  13. Long, T. C., Saleh, N., Tilton, R. D., Lowry, G. V. and Veronesi, B. "Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): Implications for nanoparticle neurotoxicity," Environ. Sci. Technol., 40(14), 4346-4352(2006). https://doi.org/10.1021/es060589n
  14. Sindhu, P. D., Punalur, J. S., Sudheer, K., Amitava, M. and Natrajan, C. "Toxic behavior of silver and zinc oxide nanoparticles on environmental microorganisms," J. Basic Microbiol., 54(9), 916-927(2014). https://doi.org/10.1002/jobm.201200316
  15. Ivan, S. and Branka, S.-S., "Silver nanoparticles as antimicrobial: a case study on E.coli as a model for Gram-negative bacteria," J. Colloid and Interface Sci., 275(1), 177-182(2004). https://doi.org/10.1016/j.jcis.2004.02.012
  16. Zarrindokht, E.-K. and Pegah, C. "Antibacterial activity of ZnO nanoparticle on gram-positive and gram-negative bacteria," African J. Micro. Res., 5(12), 1368-1373(2011).

Cited by

  1. Study on ZnO Nanoparticle Dispersions in Test Media Including Natural Organic Matter for Ecotoxicological Assessment vol.39, pp.11, 2017, https://doi.org/10.4491/KSEE.2017.39.11.634