DOI QR코드

DOI QR Code

Development Trend of Membrane Filter Using Ceramic Fibers

세라믹 섬유를 이용한 멤브레인 필터의 연구개발 동향

  • Kim, Deuk Ju (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Lee, Jeong Woo (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Nam, Sang Yong (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University)
  • 김득주 (경상대학교 나노.신소재융합공학과) ;
  • 이정우 (경상대학교 나노.신소재융합공학과) ;
  • 남상용 (경상대학교 나노.신소재융합공학과)
  • Received : 2016.04.22
  • Accepted : 2016.04.26
  • Published : 2016.04.30

Abstract

Ceramic materials have attracted increasing attention in the last 10 years because of their high thermal stability and high permeation property compared with polymeric nanofiber membranes. Recently, novel nanofiber ceramic membranes with high porosity and flux have been fabricated from metal oxide nanofibers. To improve the performance of ceramic membranes and reduce their costs, a new ceramic membrane with a selective separation layer made of nanofibers was fabricated by electrospinning process and modification process for filtration system. This review summarizes the research trends for the development of ceramic nanofiber membrane over the past few years.

세라믹 소재는 고분자 나노섬유 분리막과 비교하여 우수한 열안정성과 고투과 물성을 가짐으로써 지난 10여 년간 많은 주목을 이끌어왔다. 최근 들어 높은 다공도와 유량을 가지는 세라믹 섬유 분리막이 금속 산화물을 이용하여 주로 전기방사법에 의해 제조되어 왔는데, 이러한 세라믹 분리막의 제조 단가를 감소하며 성능을 향상시키기 위해 나노섬유의 선택층을 가지는 세라믹 분리막들이 전기방사 공정과 개질 과정을 통해 개발되었다. 본 리뷰에서는 최근 수년간 세라믹 섬유 분리막의 개발을 위한 연구 동향에 대하여 정리하였다.

Keywords

References

  1. S. R. Shin, S. H. Han, and J. H. Kim, "Synthesis and characterization of soluble co-polyimides for biogas purification", Membr. J., 25, 231 (2015).
  2. S. H. Kwon and J. W. Rhim, "Facilitated transport separation of carbon dioxide using aminated polyetherimide membranes", Membr. J., 25, 248 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.3.248
  3. J. M. Lee, M. G. Lee, S. J. Kim, H. C. Koh, and S. Y. Nam, "Characterization of gas permeation properties of polyimide copolymer membranes", Membr. J., 25, 223 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.3.223
  4. P. Colombo, "Conventional and novel processing methods for cellular ceramics, Philosophical Transactions of the Royal Society of London A: Mathematical", Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci., 364, 109 (2006). https://doi.org/10.1098/rsta.2005.1683
  5. A. R. Studart, U. T. Gonzenbach, E. Tervoort, and L. J. Gauckler, "Processing routes to macroporous ceramics: a review", J. Am. Ceram. Soc., 89, 1771 (2006). https://doi.org/10.1111/j.1551-2916.2006.01044.x
  6. M. Fukushima, Y. I. Yoshizawa, and T. Ohji, "Macroporous ceramics by gelation-freezing route using gelatin", Adv. Eng. Mater., 16, 607 (2014). https://doi.org/10.1002/adem.201400067
  7. M. F. Sanches, N. Vitorino, C. Freitas, J. C. C. Abrantes, J. R. Frade, J. B. R. Neto, and D. Hotza, "Cellular ceramics by gelatin gelcasting of emulsified suspensions with sunflower oil", J. Eur. Ceram. Soc., 35, 2577 (2015). https://doi.org/10.1016/j.jeurceramsoc.2015.03.008
  8. S. Vijayan, R. Narasimman, and K. Prabhakaran, "A urea crystal templating method for the preparation of porous alumina ceramics with the aligned pores", J. Eur. Ceram. Soc., 33, 1929 (2013). https://doi.org/10.1016/j.jeurceramsoc.2013.02.031
  9. G. Frank, E. Christian, and K. Dietmar, "A novel production method for porous sound-absorbing ceramic material for high-temperature applications", Int. J. Appl. Ceram. Technol., 8, 646 (2011). https://doi.org/10.1111/j.1744-7402.2009.02479.x
  10. S. Meille, M. Lombardi, J. Chevalier, and L. Montanaro, "Mechanical properties of porous ceramics in compression: On the transition between elastic, brittle, and cellular behavior", J. Eur. Ceram. Soc., 32, 3959 (2012). https://doi.org/10.1016/j.jeurceramsoc.2012.05.006
  11. R. Stanculescu, C. E. Ciomaga, L. Padurariu, P. Galizia, N. Horchidan, C. Capiani, C. Galassi, and L. Mitoseriu, "Study of the role of porosity on the functional properties of (Ba, Sr) $TiO_3$ ceramics", J. Alloy. Compd., 643, 79 (2009).
  12. J. Roscow, Y. Zhang, J. Taylor, and C. R. Bowen, "Porous ferroelectrics for energy harvesting applications", Eur. Phys. J.-Spec. Top., 224, 2949 (2015). https://doi.org/10.1140/epjst/e2015-02600-y
  13. L. Gan, M. Zhou, D. Yang, and X. Qiu, "Adsorption characteristics of carboxymethylated lignin at a hydrophobic solid/water interface", Iran. Polym. J., 23, 47 (2014). https://doi.org/10.1007/s13726-013-0198-3
  14. S. Alkoy, H. Yanik, and B. Yapar, "Fabrication of lead zirconate titanate ceramic fibers by gelation of sodium alginate", Ceram. Int., 33, 389 (2007). https://doi.org/10.1016/j.ceramint.2005.09.021
  15. S. Li, C.-A. Wang, and J. Zhou, "Effect of starch addition on microstructure and properties of highly porous alumina ceramics", Ceram. Int., 39, 8833 (2013). https://doi.org/10.1016/j.ceramint.2013.04.072
  16. K.-Y. Lim, Y.-W. Kim, and I.-H. Song, "Porous sodium borate-bonded SiC ceramics", Ceram. Int., 39, 6827 (2013). https://doi.org/10.1016/j.ceramint.2013.02.014
  17. R. L. Menchavez, C. R. M. Adavan, and J. M. Calgas, "Starch consolidation of red clay-based ceramic slurry inside a pressure-cooking system", Mater. Res., 17, 157 (2014). https://doi.org/10.1590/S1516-14392013005000162
  18. R. A. Lopes and A. M. Segadaes, "Microstructure, permeability and mechanical behaviour of ceramic foams", Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 209, 149 (1996). https://doi.org/10.1016/0921-5093(95)10146-2
  19. H.-C. Yen, "A new slurry-based shaping process for fabricating ceramic green part by selective laser scanning the gelled layer", J. Eur. Ceram. Soc., 32, 3123 (2012). https://doi.org/10.1016/j.jeurceramsoc.2012.04.014
  20. B. Elyassi, M. Sahimi, and T. T. Tsotsis, "A novel sacrificial interlayer-based method for the preparation of silicon carbide membranes", J. Membr. Sci., 316, 73 (2008). https://doi.org/10.1016/j.memsci.2007.09.044
  21. T.-H. Yoon, H.-J. Lee, J. Yan, and D.-P. Kim, "Fabrication of SiC-based ceramic microstructures from preceramic polymers with sacrificial templates and lithographic techniques-A review", J. Ceram. Soc. Jpn., 114, 473 (2006). https://doi.org/10.2109/jcersj.114.473
  22. J. Deckers, J.-P. Kruth, L. Cardon, K. Shahzad, and J. Vleugels, "Densification and geometrical assessments of alumina parts produced through indirect Selective Laser Sintering of alumina-polystyrene composite powder", Strojniski Vestn.-J. Mech. Eng., 59, 646 (2013).
  23. E. Mostafavi and A. Ataie, "Destructive interactions between pore forming agents and matrix phase during the fabrication process of porous $BiFeO_3$ ceramics", J. Mater. Sci. Technol., 31, 798 (2015). https://doi.org/10.1016/j.jmst.2015.05.002
  24. R. Liu, T. Xu, and C.-A. Wang, "A review of fabrication strategies and applications of porous ceramics prepared by freeze-casting method", Ceram. Int., 42, 2907 (2016). https://doi.org/10.1016/j.ceramint.2015.10.148
  25. B. Su, D. Zhang, and T. W. Button, "Embossing of ceramic micro-pillar arrays", J. Eur. Ceram. Soc., 32, 3345 (2012). https://doi.org/10.1016/j.jeurceramsoc.2012.04.009
  26. D. A. Hall, J. D. S. Evans, S. J. Covey-Crump, R. F. Holloway, E. C. Oliver, T. Mori, and P. J. Withers, "Effects of superimposed electric field and porosity on the hydrostatic pressure-induced rhombohedral to orthorhombic martensitic phase transformation in PZT 95/5 ceramics", Acta Mater., 58, 6584 (2010). https://doi.org/10.1016/j.actamat.2010.07.032
  27. J. S. Han, C. W. Gal, J. H. Kim, and S. J. Park, "Fabrication of high-aspect-ratio micro piezoelectric array by powder injection molding", Ceram. Int., 42, 9475 (2016). https://doi.org/10.1016/j.ceramint.2016.03.011
  28. J. Hur, J. H. Kim, T. G. Lee, I. T. Seo, D. H. Kim, S. Nahm, and C. Y. Kang, "Structural and piezoelectric properties of (1-x)Pb(Zr1-yTiy)$O_3$-xPb $(Zn_{0.4}Ni_{0.6})1/3Nb_2/3O_3$ ceramics near triple point", J. Am. Ceram. Soc., 98, 2887 (2015). https://doi.org/10.1111/jace.13687
  29. Y.-S. Cho, S.-Y. Choi, Y.-K. Kim, and G.-R. Yi, "Bulk synthesis of ordered macroporous silica particles for superhydrophobic coatings", J. Colloid Interface Sci., 386, 88 (2012). https://doi.org/10.1016/j.jcis.2012.07.052
  30. B. Yuan, H. Wu, X. Sun, G. Wang, and H. Li, "Fabrication of porous alumina green bodies from suspension emulsions by gelcasting", Mater. Lett., 81, 151 (2012). https://doi.org/10.1016/j.matlet.2012.04.112
  31. V. G. Resmi, J. P. Deepa, V. Lakshmi, T. P. D. Rajan, C. Pavithran, and B. C. Pai, "Processing of porous SiC by aluminum-derived binders and sacrificial porogen leaching method", Int. J. Appl. Ceram. Technol., 12, 967 (2015). https://doi.org/10.1111/ijac.12358
  32. U. T. Gonzenbach, A. R. Studart, E. Tervoort, and L. J. Gauckler, "Macroporous ceramics from particle-stabilized wet foams", J. Am. Ceram. Soc., 90, 16 (2007). https://doi.org/10.1111/j.1551-2916.2006.01328.x
  33. J. H. Lee, G. H. Ryu, J. H. Cho, T. K. Song, M. H. Kim, T. G. Park, D. Do, S. S. Kim, Y. S. Sung, andS. Baik, "A-site effects on the dielectric and the piezoelectric properties of (Na0. 50+x K0.50-x)(Nb0. 55Ta0. 45) O3 ceramics", J. Korean Phys. Soc., 60, 297 (2012). https://doi.org/10.3938/jkps.60.297
  34. M. Liu, H.-Q. Zhou, M. Liu, Z.-X. Yue, and H.-K. Zhu, "Effects of various fillers on sintering, microstructures and properties of Ca-Ba-Al-B-Si-O glass/ceramic composites", J. Cent. South Univ., 21, 843 (2014). https://doi.org/10.1007/s11771-014-2008-2
  35. B. V. M. Kumar and Y. W. Kim, "Processing of polysiloxane-derived porous ceramics: a review", Sci. Technol. Adv. Mater., 11, 044303 (2010). https://doi.org/10.1088/1468-6996/11/4/044303
  36. L. Y. Zhang, D. L. Zhou, Y. Chen, B. Liang, and J. B. Zhou, "Preparation of high open porosity ceramic foams via direct foaming molded and dried at room temperature", J. Eur. Ceram. Soc., 34, 2443 (2014). https://doi.org/10.1016/j.jeurceramsoc.2014.02.001
  37. http://www.pall.co.kr, April 12 (2016).
  38. K. R. Cummer and R. C. Brown, "Ancillary equipment for biomass gasification", Biomass Bioenerg., 23, 113 (2002). https://doi.org/10.1016/S0961-9534(02)00038-7
  39. S. Heidenreich, "Hot gas filtration- A review", Fuel, 104, 83 (2013). https://doi.org/10.1016/j.fuel.2012.07.059
  40. F. Yang, R. Murugan, S. Wang, and S. Ramakrishna, "Electrospinning of nano/micro scale poly (L-lactic acid) aligned fibers and their potential in neural tissue engineering", Biomaterials, 26, 2603 (2005). https://doi.org/10.1016/j.biomaterials.2004.06.051
  41. Q. Fan and M. S. Whittingham, "Electrospun manganese oxide nanofibers as anodes for lithium-ion batteries", Electrochem. Solid State Lett., 10, A48 (2007). https://doi.org/10.1149/1.2422749
  42. H. Li, W. Zhang, B. Li, and W. Pan, "Diameter-dependent photocatalytic activity of electrospun $TiO_2$ nanofiber", J. Am. Ceram. Soc., 93, 2503 (2010). https://doi.org/10.1111/j.1551-2916.2010.03841.x
  43. A. Yang, X. Tao, G. K. H. Pang, and K. G. G. "Siu, Preparation of porous tin oxide nanobelts using the electrospinning technique", J. Am. Ceram. Soc., 91, 257 (2008).
  44. C. Ban, N. A. Chernova, and M. S. Whittingham, "Electrospun nano-vanadium pentoxide cathode", Electrochem. Commun., 11, 522 (2009). https://doi.org/10.1016/j.elecom.2008.11.051
  45. Z. Zhang, X. Li, C. Wang, L. Wei, Y. Liu, and C. Shao, "ZnO hollow nanofibers: fabrication from facile single capillary electrospinning and applications in gas sensors", J. Phys. Chem. C, 113, 19397 (2009). https://doi.org/10.1021/jp9070373
  46. Y. He, T. Zhang, W. Zheng, R. Wang, X. Liu, Y. Xia, and J. Zhao, "Humidity sensing properties of $BaTiO_3$ nanofiber prepared via electrospinning", Sens. Actuator B-Chem., 146, 98 (2010). https://doi.org/10.1016/j.snb.2010.02.030
  47. S. K. Choi, S. Kim, S. K. Lim, and H. Park, "Photocatalytic comparison of $TiO_2$ nanoparticles and electrospun $TiO_2$ nanofibers: effects of mesoporosity and interparticle charge transfer", J. Phys. Chem. C, 114, 16475 (2010). https://doi.org/10.1021/jp104317x
  48. T. Yin, D. Liu, Y. Ou, F. Ma, S. Xie, J.-F. Li, and J. Li, "Nanocrystalline thermoelectric $Ca_3Co_4O_9$ ceramics by sol-gel based electrospinning and spark plasma sintering", J. Phys. Chem. C, 114, 10061 (2010). https://doi.org/10.1021/jp1024872
  49. T. Pirzada, S. A. Arvidson, C. D. Saquing, S. S. Shah, and S. A. Khan, "Hybrid silica PVA nanofibers via sol-gel electrospinning", Langmuir, 28, 5834 (2012). https://doi.org/10.1021/la300049j
  50. Y. Gu, F. Jian, and X. Wang, "Synthesis and characterization of nanostructured $Co_3O_4$ fibers used as anode materials for lithium ion batteries", Thin Solid Films, 517, 652 (2008). https://doi.org/10.1016/j.tsf.2008.07.026
  51. P. S. Archana, R. Jose, T. M. Jin, C. Vijila, M. M. Yusoff, and S. Ramakrishna, "Structural and electrical properties of Nb doped anatase $TiO_2$ nanowires by electrospinning", J. Am. Ceram. Soc., 93, 4096 (2010). https://doi.org/10.1111/j.1551-2916.2010.04003.x
  52. C.-J. Li and J.-N. Wang, "Electrospun $SrRe_{0.6}$ $Fe_{11.4}$ $O_{19}$ magnetic nanofibers: Fabrication and characterization", Mater. Lett., 64, 586 (2010). https://doi.org/10.1016/j.matlet.2009.12.009
  53. L. Li, P. Zhang, J. Liang, and S.M. Guo, "Phase transformation and morphological evolution of electrospun zirconia nanofibers during thermal annealing", Ceram. Int., 36, 589 (2010). https://doi.org/10.1016/j.ceramint.2009.09.030
  54. S. H. Park, S. M. Lee, H. S. Lim, J. T. Han, D. R. Lee, H. S. Shin, Y. Jeong, J. Kim, and J. H. Cho, "Robust superhydrophobic mats based on electrospun crystalline nanofibers combined with a silane precursor", ACS Appl. Mater. Interfaces, 2, 658 (2010). https://doi.org/10.1021/am100005x
  55. P.-C. Yu, R.-J. Yang, Y.-Y. Tsai, W. Sigmund, and F.-S. Yen, "Growth mechanism of single-crystal a-$Al_2O_3$ nanofibers fabricated by electrospinning techniques", J. Eur. Ceram. Soc., 31, 723 (2011). https://doi.org/10.1016/j.jeurceramsoc.2010.11.011
  56. X. B. Ke, Z. F. Zheng, H. W. Liu, H. Y. Zhu, X. P. Gao, L. X. Zhang, N. P. Xu, H. Wang, H. J. Zhao, and J. Shi, "High-flux ceramic membranes with a nanomesh of metal oxide nanofibers", J. Phys. Chem. B, 112, 5000 (2008). https://doi.org/10.1021/jp709837r
  57. B.-Y. Lee, K. Behler, M. E. Kurtoglu, M. A. Wynosky-Dolfi, R. F. Rest, and Y. Gogotsi, "Titanium dioxide-coated nanofibers for advanced filters", J. Nanopart. Res., 12, 2511 (2010). https://doi.org/10.1007/s11051-009-9820-x
  58. C. Feng, K. C. Khulbe, T. Matsuura, S. Tabe, and A. F. Ismail, "Preparation and characterization of electro-spun nanofiber membranes and their possible applications in water treatment", Sep. Purif. Technol., 102, 118 (2013). https://doi.org/10.1016/j.seppur.2012.09.037
  59. Q. Wang, Y. Bai, J. Xie, Q. Jiang, and Y. Qiu, "Synthesis and filtration properties of polyimide nanofiber membrane/carbon woven fabric sandwiched hot gas filters for removal of PM 2.5 particles", Powder Technol., 292, 24 (2016).