DOI QR코드

DOI QR Code

Preparation and Characterizations of Ferroxane-Nafion Composite Membranes for PEMFC

PEMFC용 Ferroxane-나피온 복합막의 제조 및 특성분석

  • Shin, Mun-Sik (Department of Environmental Engineering, College of Engineering, Sangmyung University) ;
  • Oh, Gyu-Hyeon (Department of Environmental Engineering, College of Engineering, Sangmyung University) ;
  • Park, Jin-Soo (Department of Environmental Engineering, College of Engineering, Sangmyung University)
  • 신문식 (상명대학교 공과대학 환경공학과) ;
  • 오규현 (상명대학교 공과대학 환경공학과) ;
  • 박진수 (상명대학교 공과대학 환경공학과)
  • Received : 2016.04.25
  • Accepted : 2016.04.26
  • Published : 2016.04.30

Abstract

In this study, the organic-inorganic composite membranes composed of iron oxide (Ferroxane) and Nafion were developed as an alternative proton exchange membranes (PEMs) in proton exchange membrane fuel cell (PEMFC). Acetic acid-stabilized lepidocrocite (${\gamma}$-FeOOH) nanoparticles (ferroxane) was synthesized, and the ferroxane-Nafion composite membranes were prepared by mixing Nafion with the ferroxane. The composite membranes were investigated in terms of ionic conductivity, ion exchange capacity (IEC), FT-IR, thermal stability, etc. As a result, the ferroxane-Nafion composite membranes showed higher proton conductivity, IEC, thermal stability than Nafion recast membranes. The proton conductivity and IEC of the composite membrane with the best performance were $0.09S\;cm^{-1}$ and $0.906meq\;g^{-1}$, respectively.

본 연구에서는 고분자전해질 연료전지의 전해질막의 성능향상을 위하여 철산화물(Ferroxane)과 나피온을 이용하여 유무기 복합막을 개발하였다. 아세트산을 이용하여 안정화시킨 lepidocrocite을 이용한 ferroxane 나노입자를 합성하였고, 이를 나피온과 혼합하여 복합막들을 제조하였다. 제조된 복합막들의 성능 및 열안정성을 평가하기 위해 이온전도도, 이온교환용량(IEC), 함수율 및 TGA 측정을 수행하였다. 그 결과 ferroxane 나노입자를 함유한 나피온 복합막의 수소이온전도도가 리캐스팅한 나피온막보다 높은 이온전도도 및 이온교환용량을 보였으며, 높은 열적 안정성 결과를 얻었다. 최고 성능의 복합막의 수소이온전도도는 $0.09S\;cm^{-1}$이며, 이온교환용량은 $0.906meq\;g^{-1}$을 보였다.

Keywords

References

  1. L. Zhang, S.-R. Chae, Z. Hendren, J.-S. Park, and M. R. Wiesner, "Recent advances in proton exchange membranes for fuel cell applications", Chem. Eng. J., 204, 87 (2012).
  2. H. Zhang and P. K. Shen, "Recent development of polymer electrolyte membranes for fuel cells", Chem. Rev., 12, 2780 (2012).
  3. K. Sopian and W. R. Wan Daud, "Challenges and future developments in proton exchange membrane fuel cells", Renew. Energ., 31, 719 (2006). https://doi.org/10.1016/j.renene.2005.09.003
  4. H.-C. Chien, L.-D. Tsai, C.-P. Huang, C.-Y. Kang, J.-N. Lin, and F.-C. Chang, "Sulfonated graphene oxide/Nafion composite membranes for high-performance direct methanol fuel cells," Int. J. Hydrogen. Energ., 38, 13792 (2013). https://doi.org/10.1016/j.ijhydene.2013.08.036
  5. D. C. Lee, H. N. Yang, S. H. Park, and W. J. Kim, "Nafion/graphene oxide composite membranes for low humidifying polymer electrolyte membrane fuel cell," J. Membr. Sci., 452, 20 (2014). https://doi.org/10.1016/j.memsci.2013.10.018
  6. H. Ghassemi, T. Zawodzinski, D. Schiraldi, and S. Hamrock, "Cross-linked low EW PFSA for high temperature fuel cell", ACS Symp. Ser., 12, 201 (2012).
  7. V. S. Bagotsky, "Proton-exchange membrane fuel cells", pp. 41-69, John Wiley & Sons, New York, NY (2012).
  8. E. M. Tsui, M. M. Cortalezzi, and M. R. Wiesner, "Proton conductivity and methanol rejection by ceramic membranes derived from ferroxane and alumoxane precursors", J. Membr. Sci., 306, 8 (2007). https://doi.org/10.1016/j.memsci.2007.03.026
  9. Y. Sone, P. Ekdunge, and D. Simonsson, "Proton conductivity of Nafion 117 as measured by a four-electrode AC impedance method", J. Electrochem. Soc., 143, 1254 (1996). https://doi.org/10.1149/1.1836625
  10. J. Rose, M. M. Cortalezzi-Fidalgo, S. Moustier, C. Magnetto, C. D. Jones, A. R. Barron, M. R. Wiesner, and J.-Y. Bottero, "Synthesis and characterization of carboxylate-FeOOH nanoparticles (ferroxanes) and ferroxane-derived ceramics", Chem. Mater, 14, 621 (2002). https://doi.org/10.1021/cm010583r
  11. H. Guo and A. S. Barnard, "Proton transfer in the hydrogenbonded chains of lepidocrocite: a computational study", Phys. Chem. Chem. Phys., 13, 17864 (2011). https://doi.org/10.1039/c1cp22508a
  12. E. M. Tsui, M. M. Cortalezzi, and M. R. Wiesner, "Proton conductivity and methanol rejection by ceramic membranes derived from ferroxane and alumoxane precursors", J. Membr. Sci., 306, 8 (2007). https://doi.org/10.1016/j.memsci.2007.03.026
  13. E. M. Tsui and M. R. Wiesner, "Fast proton-conducting ceramic membranes derived from ferroxane nanoparticle precursors as fuel cell electrolytes", J. Membr. Sci., 318, 79 (2008). https://doi.org/10.1016/j.memsci.2008.02.025
  14. L. Zhang, S.-R. Chae, S. Lin, and M. R. Wiesner, "Proton-conducting composite membranes derived from ferroxane-Polyvinyl alcohol complex", Environ. Eng. Sci., 29, 124 (2012). https://doi.org/10.1089/ees.2011.0270
  15. M. M. Cortalezzi, J. Rose, G. F. Wells, J. Y. Bottero, A. R. Barron, and M. R. Wiesner, "Ceramic membranes derived from ferroxane nanoparticles: a new route for the fabrication of iron oxide ultrafiltration membranes", J. Membr. Sci., 227, 207 (2003). https://doi.org/10.1016/j.memsci.2003.08.027
  16. H. J. Lee, Y.-W. Choi, T.-H. Yang, and B. C. Bae, "Hydrocarbon composite membranes with improved oxidative stability for PEMFC", J. Korean Electrochem. Soc., 17, 44 (2014). https://doi.org/10.5229/JKES.2014.17.1.44
  17. J. O. Yuk, S. J. Lee, T.-H. Yang, and B. C. Bae, "Synthesis and characterization of multi-block sulfonated poly(arylene ether sulfone) polymer membrane with different hydrophilic moieties for PEMFC", J. Korean Electrochem. Soc., 18, 75 (2015). https://doi.org/10.5229/JKES.2015.18.2.75
  18. S. Y. Lee, H. J. Kim, S. Y. Nam, and C. H. Park, "Synthetic strategies for high performance hydrocarbon polymer electrolyte membranes (PEMs) for fuel cells", Membr. J., 26, 1 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.1.1
  19. W. C. Hwa, D. J. Kim, and S. Y. Nam, "Characterization of SPAES composite membrane using silane based inorganics", Membr. J., 25, 5 (2015).
  20. B. R. Jung, Y. Son, Y. T. Lee, and N. Kim, "Preparation of organic-inorganic hybrid PES membranes using Fe(II) clathrochelate", Membr. J., 23, 1 (2013).