DOI QR코드

DOI QR Code

A Brief Review on Relaxor Ferroelectrics and Selected Issues in Lead-Free Relaxors

  • Ahn, Chang Won (Department of Physics and EHSRC, University of Ulsan) ;
  • Hong, Chang-Hyo (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology) ;
  • Choi, Byung-Yul (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology) ;
  • Kim, Hwang-Pill (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology) ;
  • Han, Hyoung-Su (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology) ;
  • Hwang, Younghun (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology) ;
  • Jo, Wook (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology) ;
  • Wang, Ke (School of Materials Science and Engineering, Tsinghua University) ;
  • Li, Jing-Feng (School of Materials Science and Engineering, Tsinghua University) ;
  • Lee, Jae-Shin (School of Materials Science and Engineering, University of Ulsan) ;
  • Kim, Ill Won (Department of Physics, University of Ulsan)
  • Received : 2016.02.29
  • Accepted : 2016.04.11
  • Published : 2016.06.30

Abstract

Relaxor ferroelectricity is one of the most widely investigated but the least understood material classes in the condensed matter physics. This is largely due to the lack of experimental tools that decisively confirm the existing theoretical models. In spite of the diversity in the models, they share the core idea that the observed features in relaxors are closely related to localized chemical heterogeneity. Given this, this review attempts to overview the existing models of importance chronologically, from the diffuse phase transition model to the random-field model and to show how the core idea has been reflected in them to better shape our insight into the nature of relaxor-related phenomena. Then, the discussion will be directed to how the models of a common consensus, developed with the so-called canonical relaxors such as $Pb(Mg_{1/3}Nb_{2/3})O_3$ (PMN) and $(Pb,\;La)(Zr,\; Ti)O_3$ (PLZT), are compatible with phenomenological explanations for the recently identified relaxors such as ($Bi_{1/2}Na_{1/2})TiO_3$ (BNT)-based lead-free ferroelectrics. This review will be finalized with a discussion on the theoretical aspects of recently introduced 0-3 and 2-2 ferroelectric/relaxor composites as a practical tool for strain engineering.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. G. H. Haertling, J. Am. Ceram. Soc. 82, 797 (1999). https://doi.org/10.1111/j.1151-2916.1999.tb01840.x
  2. G. A. Samara, Solid State Phys. 56, 239 (2001).
  3. R. Blinc, Ferroelectrics 267, 3 (2002). https://doi.org/10.1080/713715894
  4. M. Dawber, K. M. Rabe, and J. F. Scott, Rev. Mod. Phys. 77, 1083 (2005). https://doi.org/10.1103/RevModPhys.77.1083
  5. J. F. Scott, Science 315, 954 (2007). https://doi.org/10.1126/science.1129564
  6. N. Setter et al., J. Appl. Phys. 100, 051606 (2006). https://doi.org/10.1063/1.2336999
  7. F. Jona and G. Shirane, Ferroelectric Crystals (The McMillan Company, New York, 1962).
  8. M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 1977).
  9. L. E. Cross, Ferroelectrics 76, 241 (1987). https://doi.org/10.1080/00150198708016945
  10. G. A. Smolenskii and A. I. Agranovskaya, Sov. Phys. Tech. Phys. 3, 1380 (1958).
  11. V. V. Kirillov and V. A. Isupov, Ferroelectrics 5, 3 (1973). https://doi.org/10.1080/00150197308235773
  12. D. Viehland, S. J. Jang, L. E. Cross and M. Wuttig, J. Appl. Phys. 68, 2916 (1990). https://doi.org/10.1063/1.346425
  13. V. Westphal, W. Kleemann and M. Glinchuk, Phys. Rev. Lett. 68, 847 (1992). https://doi.org/10.1103/PhysRevLett.68.847
  14. M. A. Akbas and P. K. Davies, J. Am. Ceram. Soc. 80, 2933 (1997). https://doi.org/10.1111/j.1151-2916.1997.tb03214.x
  15. Z-Y. Cheng, R. S. Katiyar, X. Yao and A. Guo, Phys. Rev. B 55, 8165 (1997). https://doi.org/10.1103/PhysRevB.55.8165
  16. R. Pirc and R. Blinc, Phys. Rev. B 60, 13470 (1999). https://doi.org/10.1103/PhysRevB.60.13470
  17. G. A. Samara, J. Phys. Condens. Matter 15, R367 (2003). https://doi.org/10.1088/0953-8984/15/9/202
  18. W. Kleemann, J. Mater. Sci. 41, 129 (2006). https://doi.org/10.1007/s10853-005-5954-0
  19. R. Blinc, V. V. Laguta, B. Zalar and J. Banys, J. Mater. Sci. 41, 27 (2006). https://doi.org/10.1007/s10853-005-5914-8
  20. R. A. Cowley, S. N. Gvasaliya, S. G. Lushnikov, B. Roessli and G. M. Rotaru, Adv. Phys. 60, 229 (2011). https://doi.org/10.1080/00018732.2011.555385
  21. A. A. Bokov and Z-G. Ye, J. Adv. Dielectr. 2, 1241010 (2012). https://doi.org/10.1142/S2010135X1241010X
  22. W. Kleemann, J. Adv. Dielectr. 2, 1241001 (2012). https://doi.org/10.1142/S2010135X12410019
  23. J. Hlinka, J. Adv. Dielectr. 2, 1241006 (2012). https://doi.org/10.1142/S2010135X12410068
  24. J. Galvagni, Opt. Eng. 29, 1389 (1990). https://doi.org/10.1117/12.55742
  25. D. Damjanovic and R. E. Newnham, J. Intel. Mat. Syst. Str. 3, 190 (1992). https://doi.org/10.1177/1045389X9200300201
  26. K. Uchino, Acta Mater. 46, 3745 (1998). https://doi.org/10.1016/S1359-6454(98)00102-5
  27. S. Fujiwara, K. Furukawa, N. Kikuchi, O. Iizawa and H. Tanaka, High dielectric constant type ceramic composition (1981), US Patent 4,265,668, URL http://www.google.com.gh/patents/US4265668.
  28. Y. Takeuchi and K. Kimura, Piezoelectric/electrostrictive actuator having ceramic substrate having recess defining thin-walled portion (1993), US Patent 5,210,455, http://www.google.com.gh/patents/US5210455.
  29. A. Sutherland, K. Bridger, E. Fiore, J. Christodoulou, A. Bailey and A. Gelb, High energy density lead magnesium niobate-based dielectric ceramic and process for the preparation thereof (1994), US Patent 5,337,209, URL http://www.google.com.gh/patents/US5337209.
  30. T. Gururaja, J. Fielding, T. Shrout and S. Jang, Electrostrictive ultrasonic probe having expanded operating temperature range (1994), US Patent 5,345,139, http://www.google.com.gh/patents/US5345139.
  31. J. Mutton, H. Le, Q. Zhang, R. Adams, L. Cross, T. Shrout and Q. Jiang, Ferroelectric relaxor actuator for an ink-jet print head (1998), US Patent 5,790,156, URL http://www.google.com.gh/patents/US5790156.
  32. W. Jo, S. Schaab, E. Sapper, L. A. Schmitt, H-J. Kleebe, A. J. Bell and J. Rodel, J. Appl. Phys. 110, 074106 (2011). https://doi.org/10.1063/1.3645054
  33. W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, K. Wang and J. Rodel, J. Electroceram. 29, 71 (2012). https://doi.org/10.1007/s10832-012-9742-3
  34. C-H. Hong, H-P. Kim, B-Y. Choi, H-S. Han, J. S. Son, C.W. Ahn andW. Jo, J. Materiomics 2, 1 (2016). https://doi.org/10.1016/j.jmat.2015.12.002
  35. S-T. Zhang, A. B. Kounga, E. Aulbach, H. Ehrenberg and J. Rodel, Appl. Phys. Lett. 91, 112906 (2007). https://doi.org/10.1063/1.2783200
  36. S-T. Zhang, A. B. Kounga, E. Aulbach, T. Granzow, W. Jo, H-J. Kleebe and J. Rodel, J. Appl. Phys. 103, 034107 (2008). https://doi.org/10.1063/1.2838472
  37. S-T. Zhang, A. B. Kounga, E. Aulbach, W. Jo, T. Granzow, H. Ehrenberg and J. Rodel, J. Appl. Phys. 103, 034108 (2008). https://doi.org/10.1063/1.2838476
  38. G. A. Smolenskii and A. I. Agranovskaya, Sov. Phys. Tech. Phys. 3, 1380 (1958).
  39. G. A. Smolenskii, V. A. Isupov, A. I. Agranovskaya and S. N. Popov, Sov. Phys. Solid State 2, 2584 (1961).
  40. N. Setter and L. E. Cross, J. Appl. Phys. 51, 4356 (1980). https://doi.org/10.1063/1.328296
  41. C. G. F. Stenger, F. L. Scholten and A. J. Burggraaf, Solid State Commun. 32, 989 (1979). https://doi.org/10.1016/0038-1098(79)90812-3
  42. N. Setter and L. E. Cross, J. Mater. Sci. 15, 2478 (1980). https://doi.org/10.1007/BF00550750
  43. G. Burns and B. A. Scott, Solid State Commun. 13, 423 (1973). https://doi.org/10.1016/0038-1098(73)90622-4
  44. G. A. Smolenskii, Jpn. J. Phys. Soc. S28, 26 (1970).
  45. A. K. Tagantsev, Phys. Rev. Lett. 72, 1100 (1994). https://doi.org/10.1103/PhysRevLett.72.1100
  46. A. E. Glazounov and A. K. Tagantsev, Appl. Phys. Lett. 73, 856 (1998). https://doi.org/10.1063/1.122024
  47. R. Clarke and J. C. Burfoot, Ferroelectrics 8, 505 (1974). https://doi.org/10.1080/00150197408234141
  48. J. Kuwata, K. Uchino and S. Nomura, Ferroelectrics 22, 863 (1979).
  49. G. Burns and F. Dacol, Phys. Rev. B 28, 2527 (1983). https://doi.org/10.1103/PhysRevB.28.2527
  50. A. Bosak, D. Chernyshov, S. Vakhrushev and M. Krisch, Acta crystallogr. A 68, 117 (2012). https://doi.org/10.1107/S0108767311040281
  51. H. Vogel, Phys. Z 22, 645 (1921).
  52. G. S. Fulcher, J. Am. Ceram. Soc. 8, 339 (1925). https://doi.org/10.1111/j.1151-2916.1925.tb16731.x
  53. G. Tammann, Z. Anorg. Allg. Chem. 156, 245 (1926). https://doi.org/10.1002/zaac.19261560121
  54. D. Viehland, M. Wuttig and L. E. Cross, Ferroelectrics 120, 71 (1991). https://doi.org/10.1080/00150199108216802
  55. Z. Kutnjak, C. Filipic, A. Levstik and R. Pirc, Phys. Rev. Lett. 70, 4015 (1993). https://doi.org/10.1103/PhysRevLett.70.4015
  56. J. Hemberger, H. Ries, A. Loidl and R. Bohmer, Phys. Rev. Lett. 76, 4015 (1996).
  57. S. N. Dorogovtsev and N. K. Yushin, Ferroelectrics 112, 27 (1990). https://doi.org/10.1080/00150199008012783
  58. A. Levstik, Z. Kutnjak, C. Filipic and R. Pirc, Phys. Rev. B 57, 11204 (1998). https://doi.org/10.1103/PhysRevB.57.11204
  59. Z. Kutnjak, C. Filipic, R. Pirc, A. Levstik, R. Farhi and M. El Marssi, Phys. Rev. B 59, 294 (1999).
  60. R. Pirc and R. Blinc, Phys. Rev. B 76, 020101 (2007).
  61. M. Tachibana and E. Takayama-Muromachi, Phys. Rev. B 79, 100104 (2009). https://doi.org/10.1103/PhysRevB.79.100104
  62. N. Novak, R. Pirc, M. Wencka and Z. Kutnjak, Phys. Rev. Lett. 109, 037601 (2012). https://doi.org/10.1103/PhysRevLett.109.037601
  63. S. B. Vakhrushev, B. E. Kryatkovsky, A. A. Naberenzhnov, N. M. Okuneva and B. P. Toperverg, Ferroelectrics 90, 173 (1989). https://doi.org/10.1080/00150198908211287
  64. H. Qian and L. A. Bursill, Int. J. Mond. Phys. B 10, 2007 (1996). https://doi.org/10.1142/S021797929600091X
  65. A. Naberezhnov, S. Vakhrushev, B. Dorner, D. Strauch and H. Moudden, Eur. Phys. J. B 11, 13 (1999). https://doi.org/10.1007/s100510050912
  66. K. Hirota, Z-G. Ye, S. Wakimoto, P. M. Gehring and G. Shirane, Phys. Rev. B 65, 104105 (2002). https://doi.org/10.1103/PhysRevB.65.104105
  67. G. Xu, G. Shirane, J. R. D. Copley and P. M. Gehring, Phys. Rev. B 69, 064112 (2004). https://doi.org/10.1103/PhysRevB.69.064112
  68. W. Jo, J. Daniels, D. Damjanovic, W. Kleemann and J. Rodel, Appl. Phys. Lett. 102, 192903 (2013). https://doi.org/10.1063/1.4805360
  69. H. Arndt, F. Sauerbier, G. Schmidt and L. A. Shebanov, Ferroelectrics 79, 145 (1988). https://doi.org/10.1080/00150198808229417
  70. R. Sommer, N. K. Yushin and J. J. van der Klink, Phys. Rev. B 48, 13230 (1993). https://doi.org/10.1103/PhysRevB.48.13230
  71. E. V. Colla, E. Y. Koroleva, N. M. Okuneva and S. B. Vakhrushev, Phys. Rev. Lett. 74, 1681 (1995). https://doi.org/10.1103/PhysRevLett.74.1681
  72. O. Bidault, M. Licheron, E. Husson and A. Morell, J. Phys.: Condens. Matter 8, 8017 (1996). https://doi.org/10.1088/0953-8984/8/42/020
  73. V. Bobnar, Z. Kutnjak, R. Pirc and A. Levstik, Phys. Rev. B 60, 6420 (1999). https://doi.org/10.1103/PhysRevB.60.6420
  74. Y. Imry and S-K. Ma, Phys. Rev. Lett. 35, 1399 (1975). https://doi.org/10.1103/PhysRevLett.35.1399
  75. B. P. Burton, E. Cockayne and U. V. Waghmare, Phys. Rev. B 72, 064113 (2005). https://doi.org/10.1103/PhysRevB.72.064113
  76. B. J. Rodriguez, S. Jesse, A. A. Bokov, Z-G. Ye and S. V. Kalinin, Appl. Phys. Lett. 95, 092904 (2009). https://doi.org/10.1063/1.3222868
  77. A. R. Bishop, A. Bussmann-Holder, S. Kamba and M. Maglione, Phys. Rev. B 81, 064106 (2010). https://doi.org/10.1103/PhysRevB.81.064106
  78. V. V. Shvartsman, J. Dec, S. Miga, T. Lukasiewicz and W. Kleemann, Ferroelectrics 376, 1 (2008). https://doi.org/10.1080/00150190802440658
  79. V. V. Shvartsman, W. Kleemann, T. Lukasiewicz and J. Dec, Phys. Rev. B 77, 054105 (2008). https://doi.org/10.1103/PhysRevB.77.054105
  80. D. S. Fisher, G. M. Grinstein and A. Khurana, Phys. Today 41, 56 (1988).
  81. V. V. Shvartsman, J. Dec, Z. K. Xu, J. Banys, P. Keburis and W. Kleemann, Phase Trans. 81, 11 (2008).
  82. V. V. Shvartsman, J. Zhai and W. Kleemann, Ferroelectrics 379, 77 (2009). https://doi.org/10.1080/00150190902850822
  83. C. Laulhe, F. Hippert, J. Kreisel, A. Pasturel, A. Simon, J-L. Hazemann, R. Bellissent and G. J. Cuello, Phase Trans. 84, 438 (2011). https://doi.org/10.1080/01411594.2010.547153
  84. P. K. Davies, Curr. Opin. Solid State Mater. Sci. 4, 467 (1999). https://doi.org/10.1016/S1359-0286(00)00002-4
  85. Z-Y. Cheng, R. S. Katiyar, X. Yao and A. Guo, Phys. Rev. B 55, 8165 (1997). https://doi.org/10.1103/PhysRevB.55.8165
  86. D. Lin, Z. Li, S. Zhang, Z. Xu and X. Yao, Solid State Commun. 149, 1646 (2009). https://doi.org/10.1016/j.ssc.2009.06.029
  87. A. A. Bokov and Z-G. Ye, J. Mater. Sci. 41, 31 (2006). https://doi.org/10.1007/s10853-005-5915-7
  88. S-T. Zhang, A. B. Kounga, W. Jo, C. Jamin, K. Seifert, T. Granzow, J. Rodel and D. Damjanovic, Adv. Mater. 21, 4716 (2009). https://doi.org/10.1002/adma.200901516
  89. J. Rodel, W. Jo, K. T. P. Seifert, E-M. Anton, T. Granzow and D. Damjanovic, J. Am. Ceram. Soc. 92, 1153 (2009). https://doi.org/10.1111/j.1551-2916.2009.03061.x
  90. V. V. Shvartsman and D. C. Lupascu, J. Am. Ceram. Soc. 95, 1 (2012). https://doi.org/10.1111/j.1551-2916.2011.04952.x
  91. V. Dorcet, G. Trolliard and P. Boullay, Chem. Mater. 20, 5061 (2008). https://doi.org/10.1021/cm8004634
  92. F. Cordero, F. Craciun, F. Trequattrini, E. Mercadelli and C. Galassi, Phys. Rev. B 81, 144124 (2010). https://doi.org/10.1103/PhysRevB.81.144124
  93. W. Jo and J. Rodel, Appl. Phys. Lett. 99, 042901 (2011). https://doi.org/10.1063/1.3615675
  94. J. E. Daniels, W. Jo, J. Rodel and J. L. Jones, Appl. Phys. Lett. 95, 032904 (2009). https://doi.org/10.1063/1.3182679
  95. J. E. Daniels, W. Jo, J. Rodel, V. Honkimaki and J. L. Jones, Acta Mater. 58, 2103 (2010). https://doi.org/10.1016/j.actamat.2009.11.052
  96. W. Ge, H. Cao, J. Li, D. Viehland, Q. Zhang and H. Luo, Appl. Phys. Lett. 95, 162903 (2009). https://doi.org/10.1063/1.3253412
  97. G. Picht, J. Topfer and E. Hennig, J. Eur. Ceram. Soc. 30, 3445 (2010). https://doi.org/10.1016/j.jeurceramsoc.2010.07.042
  98. J. Kling, X. Tan, W. Jo, H-J. Kleebe, H. Fuess and J. Rodel, J. Am. Ceram. Soc. 93, 2452 (2010). https://doi.org/10.1111/j.1551-2916.2010.03778.x
  99. M. Hinterstein, M. Knapp, M. Holzel, W. Jo, A. Cervellino, H. Ehrenberg and H. Fuess, J. Appl. Crystallogr. 43, 1314 (2010). https://doi.org/10.1107/S0021889810038264
  100. H. Simons, J. Daniels, W. Jo, R. Dittmer, A. Studer, M. Avdeev, J. Rodel and M. Hoffman, Appl. Phys. Lett. 98, 082901 (2011). https://doi.org/10.1063/1.3557049
  101. H. Wanga, H. Xu, H. Luo, Z. Yin, A. A. Bokov and Z-G. Ye, Appl. Phys. Lett. 87, 012904 (2005). https://doi.org/10.1063/1.1990253
  102. E. Sapper, S. Schaab, W. Jo, T. Granzow and J. Rodel, J. Appl. Phys. 111, 014105 (2012). https://doi.org/10.1063/1.3674275
  103. K. N. Pham, A. Hussain, C. W. Ahn, I. W. Kim, S. J. Jeong and J. S. Lee, Mater. Lett. 64, 2219 (2010). https://doi.org/10.1016/j.matlet.2010.07.048
  104. G. Q. Kang, K. Yao and J. Wang, J. Am. Ceram. Soc. 94, 1331 (2011). https://doi.org/10.1111/j.1551-2916.2011.04478.x
  105. J. G. Hao, B. Shen, J. W. Zhai, C. Z. Liu, X. L. Li and X. Y. Gao, J. Am. Ceram. Soc. 96, 3133 (2013).
  106. W. Jo, T. Granzow, E. Aulbach, J. Rodel and D. Damjanovic, J. Appl. Phys. 105, 094102 (2009). https://doi.org/10.1063/1.3121203
  107. D. S. Lee, D. H. Lim, M. S. Kim, K. H. Kim and S. J. Jeong, Appl. Phys. Lett. 99, 062906 (2011). https://doi.org/10.1063/1.3621878
  108. C. Groh, D. J. Franzbach, W. Jo, K. G. Webber, J. Kling, L. A. Schmitt, H-J. Kleebe, S-J. Jeong, J-S. Lee and J. Rodel, Adv. Funct. Mater. 24, 356 (2014). https://doi.org/10.1002/adfm.201302102
  109. H. Zhang, C. Groh, Q. Zhang, W. Jo, K. G. Webber and J. Rodel, Adv. Electron. Mater. 1, 1500018 (2015). https://doi.org/10.1002/aelm.201500018
  110. T. Granzow, T. Leist, A. Kounga, E. Aulbach and J. Rodel, Appl. Phys. Lett. 91, 142904 (2007). https://doi.org/10.1063/1.2794410
  111. A. B. Kounga Njiwa, E. Aulbach, T. Granzow and J. Rodel, Acta Mater. 55, 675 (2007). https://doi.org/10.1016/j.actamat.2006.08.057
  112. W. Jo, J. E. Daniels, J. L. Jones, X. Tan, P. A. Thomas, D. Damjanovic and J. Rodel, J. Appl. Phys. 109, 014110 (2011). https://doi.org/10.1063/1.3530737
  113. S. S. Sengupta, S. M. Park, D. A. Payne and L. H. Allen, J. Appl. Phys. 83, 2291 (1998). https://doi.org/10.1063/1.366971

Cited by

  1. Ferroic superglasses: Polar nanoregions in relaxor ferroelectric PMN versus CoFe superspins in a discontinuous multilayer vol.94, pp.17, 2016, https://doi.org/10.1103/physrevb.94.174203
  2. Forced electrostriction by constraining polarization switching enhances the electromechanical strain properties of incipient piezoceramics vol.9, pp.None, 2016, https://doi.org/10.1038/am.2016.210
  3. Comparative Study of Conventional and Microwave Sintering of Large Strain Bi-Based Perovskite Ceramics vol.18, pp.1, 2017, https://doi.org/10.4313/teem.2017.18.1.1
  4. Strategies of A Potential Importance, Making Lead-Free Piezoceramics Truly Alternative to PZTs vol.54, pp.2, 2016, https://doi.org/10.4191/kcers.2017.54.2.12
  5. Continuous Hydrothermal Synthesis of Inorganic Nanoparticles: Applications and Future Directions vol.117, pp.17, 2017, https://doi.org/10.1021/acs.chemrev.6b00417
  6. Relaxation of dynamically disordered tetragonal platelets in the relaxor ferroelectric 0.964Na1/2Bi1/2TiO3−0.036BaTiO3 vol.96, pp.18, 2016, https://doi.org/10.1103/physrevb.96.184107
  7. A scaling law for distinct electrocaloric cooling performance in low-dimensional organic, relaxor and anti-ferroelectrics vol.7, pp.None, 2016, https://doi.org/10.1038/s41598-017-11633-y
  8. Ultrahigh energy-storage potential under low electric field in bismuth sodium titanate-based perovskite ferroelectrics vol.6, pp.21, 2016, https://doi.org/10.1039/c8ta00474a
  9. Temperature and induced electric field dependence on the phase transition of 9/70/30, 9/65/35 and 9/60/40 PLZT ceramics vol.91, pp.5, 2018, https://doi.org/10.1080/01411594.2017.1420190
  10. Relaxor-ferroelectric transitions: Sodium bismuth titanate derivatives vol.43, pp.8, 2018, https://doi.org/10.1557/mrs.2018.156
  11. Recent Progress in Potassium Sodium Niobate Lead-free Thin Films vol.72, pp.12, 2018, https://doi.org/10.3938/jkps.72.1467
  12. Local Structural Heterogeneity and Electromechanical Responses of Ferroelectrics: Learning from Relaxor Ferroelectrics vol.28, pp.37, 2016, https://doi.org/10.1002/adfm.201801504
  13. Evolution of depolarization temperature of PLZT from normal to relaxor ferroelectrics vol.124, pp.16, 2016, https://doi.org/10.1063/1.5028358
  14. Low temperature sintering of lead-free (Bi1/2Na1/2)TiO3-SrTiO3-BiFeO3 piezoelectric ceramics by adding excess CuO vol.41, pp.1, 2016, https://doi.org/10.1007/s10832-018-0151-0
  15. Dielectric and piezoelectric properties of Bi1/2Na1/2TiO3-SrTiO3 lead-free ceramics vol.41, pp.1, 2016, https://doi.org/10.1007/s10832-018-0161-y
  16. Effects of Long- and Short-Range Ferroelectric Order on the Electrocaloric Effect in Relaxor Ferroelectric Ceramics vol.11, pp.4, 2016, https://doi.org/10.1103/physrevapplied.11.044032
  17. Designing novel sodium bismuth titanate lead‐free incipient perovskite for piezoactuator applications vol.102, pp.11, 2019, https://doi.org/10.1111/jace.16533
  18. Heating rate effect on dielectric, ferroelectric and piezoelectric properties of Bi0.45La0.05Na0.40K0.10Ti0.98Zr0.02O3 Pb-f vol.552, pp.1, 2016, https://doi.org/10.1080/00150193.2019.1653080
  19. Effect of Electric Field Concentration by Electrode Patterning on the Incipient Piezoelectric Strain Properties of Lead-Free Piezoceramics vol.56, pp.6, 2019, https://doi.org/10.4191/kcers.2019.56.6.03
  20. Influence of Sintering Strategy on the Characteristics of Sol-Gel Ba 1−x Ce x Ti 1−x/4 O 3 Ceramics vol.9, pp.12, 2019, https://doi.org/10.3390/nano9121675
  21. Single Crystal Growth of Relaxor Ferroelectric Ba2PrFeNb4O15 by the Optical Floating Zone Method vol.19, pp.12, 2016, https://doi.org/10.1021/acs.cgd.9b01147
  22. 마이크로파 소성법으로 제조한 BNT-ST 세라믹스의 유전 및 압전 특성 vol.33, pp.1, 2016, https://doi.org/10.4313/jkem.2020.33.1.37
  23. Nonstoichiometric charge defect induced relaxor antiferroelectric ordering in La modified Bi0.5 (Na0.80K0.20)0.5TiO3 relaxor ferroelectric vol.32, pp.4, 2020, https://doi.org/10.1088/1361-648x/ab4b2a
  24. Thermal and compositional driven relaxor ferroelectric behaviours of lead-free Bi0.5Na0.5TiO3-SrTiO3 ceramics vol.8, pp.7, 2016, https://doi.org/10.1039/c9tc04864b
  25. Magneto-dielectric effect in relaxor superparaelectric Tb2CoMnO6 film vol.101, pp.9, 2016, https://doi.org/10.1103/physrevb.101.094426
  26. Electric-Field-Induced Phase Transformation and Frequency-Dependent Behavior of Bismuth Sodium Titanate–Barium Titanate vol.13, pp.5, 2016, https://doi.org/10.3390/ma13051054
  27. Domain‐scale imaging to dispel the clouds over the thermal depolarization of Bi 0.5 Na 0.5 TiO 3 ‐based relaxor ferroelectrics vol.103, pp.3, 2016, https://doi.org/10.1111/jace.16908
  28. Electrical fatigue behavior of NBT-BT-xKNN ferroelectrics: effect of ferroelectric phase transformations and oxygen vacancies vol.8, pp.11, 2020, https://doi.org/10.1039/c9tc05665c
  29. 비스무스계 무연 압전세라믹스의 저전계 변형특성 향상을 위한 세라믹/세라믹 복합소재 기술 vol.23, pp.1, 2016, https://doi.org/10.31613/ceramist.2020.23.1.06
  30. The effect of A-site cation on ferroelectric properties in Na0.5Bi0.5TiO3-based materials: Correlation between Burns temperature and remanent polarization vol.127, pp.14, 2016, https://doi.org/10.1063/1.5131201
  31. Nano-domains in lead-free piezoceramics: a review vol.8, pp.20, 2016, https://doi.org/10.1039/d0ta03201h
  32. T * of Relaxor Ferroelectric (1 − x ) Pb(Zn 1/3 Nb 2/3 )O 3 ‐ x PbTiO 3 Single Crystals Revisited Using Brillouin Spectroscopy vol.217, pp.12, 2016, https://doi.org/10.1002/pssa.201900987
  33. Effect of SrTiO3 modification on dielectric, phase transition and piezoelectric properties of lead-free Bi0.5Na0.5TiO3‒CaTiO3‒SrTiO3 piezoelectric ceramics vol.57, pp.5, 2016, https://doi.org/10.1007/s43207-020-00051-y
  34. 산화구리가 피복된 Na0.5Bi4.5Ti4O15 틀입자를 이용한 BNKT 무연 압전 세라믹스의 저온소성 연구 vol.33, pp.5, 2016, https://doi.org/10.4313/jkem.2020.33.5.337
  35. Large Electric Field-Induced Strain Response Under a Low Electric Field in Lead-Free Bi1/2Na1/2TiO3-SrTiO3-BiAlO3 Ternary Piezoelectric Ceramics vol.49, pp.11, 2016, https://doi.org/10.1007/s11664-020-08436-9
  36. Strategies to Improve the Energy Storage Properties of Perovskite Lead-Free Relaxor Ferroelectrics: A Review vol.13, pp.24, 2020, https://doi.org/10.3390/ma13245742
  37. Bi0.5Na0.5TiO3-BiFeO3-SrTiO3 삼성분계 무연 압전 세라믹스의 강유전체-완화형 강유전체 상전이 거동 vol.34, pp.1, 2021, https://doi.org/10.4313/jkem.2021.34.1.1
  38. Lead-free BaTiO3-based ceramics modified by Bi(Mg0.5Sn0.5)O3 with enhanced energy-storage performance and charge-discharge properties vol.32, pp.3, 2016, https://doi.org/10.1007/s10854-020-05085-w
  39. Structure evolution and electrical properties of lead-free Bi0.5Na0.41K0.09TiO3 piezoceramics by isovalent La doping vol.32, pp.4, 2021, https://doi.org/10.1007/s10854-020-05179-5
  40. Comparing the electromechanical properties of CaTiO3‐ and BaZrO3‐modified Bi0.5Na0.5TiO3-SrTiO3 ceramics vol.36, pp.5, 2016, https://doi.org/10.1557/s43578-020-00080-7
  41. The construction of relaxor perovskite Na0.5Bi0.5(Fe0.03Ti0.97)O3/Ba(Ti1-xSrx)O3 multilayer thin film and explor vol.543, pp.None, 2016, https://doi.org/10.1016/j.apsusc.2020.148755
  42. Depoling phenomena in $ \mathrm{Na}_{0.5}\mathrm{Bi}_{0.5}\mathrm{TiO}_{3}\text{-}\mathrm{BaTiO}_{3}$ : A structural perspective vol.103, pp.18, 2016, https://doi.org/10.1103/physrevb.103.184106
  43. Role of oxygen vacancies on the low-temperature dielectric relaxor behavior in epitaxial $ \mathrm{Ba}_{0.85}\mathrm{Ca}_{0.15}\mathrm{Ti}_{0.9}\mathrm{Zr}_{0.1}\mathrm{O}_{3}$ thin films vol.5, pp.6, 2021, https://doi.org/10.1103/physrevmaterials.5.064415
  44. Vortex domain configuration for energy-storage ferroelectric ceramics design: A phase-field simulation vol.119, pp.3, 2016, https://doi.org/10.1063/5.0051853
  45. Crystal Structure, Electrical Properties, and Energy Storage Capacity of STCN Modified BNT-BKT Based Lead-Free Dielectrics vol.10, pp.8, 2016, https://doi.org/10.1149/2162-8777/ac1c57
  46. Improved Non-Piezoelectric Electric Properties Based on La Modulated Ferroelectric-Ergodic Relaxor Transition in (Bi0.5Na0.5)TiO3-Ba(Ti, Zr)O3 Ceramics vol.14, pp.21, 2016, https://doi.org/10.3390/ma14216666
  47. Tetramethylbenzidine-TetrafluoroTCNQ (TMB-TCNQF4): A Narrow-Gap Semiconducting Salt with Room-Temperature Relaxor Ferroelectric Behavior vol.125, pp.46, 2021, https://doi.org/10.1021/acs.jpcc.1c07131
  48. Interplay of domain structure and phase transitions: theory, experiment and functionality vol.34, pp.7, 2016, https://doi.org/10.1088/1361-648x/ac3607