DOI QR코드

DOI QR Code

Screw-Dislocation-Driven Growth of ZnO Nanotubes Seeded by Self-Perpetuating Spirals during Hydrothermal Processing

  • Kim, Sojin (Department of Materials Science and Engineering, Chosun University) ;
  • Kang, Hyon Chol (Department of Materials Science and Engineering, Chosun University)
  • Received : 2016.08.01
  • Accepted : 2016.08.22
  • Published : 2016.09.13

Abstract

We report the effects of precursor concentration on the characteristics of ZnO nanostructures during hydrothermal processing. Self-perpetuating surface spirals are fabricated at concentrations of 0.25 and 0.5 M, with samples grown at concentrations of 0.05 and 0.125 M exhibiting ZnO nanorods. This can be explained by a change in the growth mode from an initial columnar growth to a screw-dislocation-driven growth with decreased supersaturation. The screw dislocations nucleate at the V-shaped valleys of the columnar boundaries during the intermediate stage. We demonstrate that continuous screw-dislocation-driven growth leads to the formation of ZnO nanotubes having Burger's vectors of 1.45 nm.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Z. Li, X. Huang , J. Liu, Y. Li, X. Ji and G. Li, Mater. Lett. 61, 4362 (2007). https://doi.org/10.1016/j.matlet.2007.02.003
  2. Z. L. Wang, X. Y. Kong and J. M. Zuo, Phys. Rev. Lett. 91, 185502 (2003). https://doi.org/10.1103/PhysRevLett.91.185502
  3. B. Liu and H. C. Zeng, Nano Res. 2, 201 (2009). https://doi.org/10.1007/s12274-009-9018-7
  4. A. Gurlo, Nanoscale 3, 154 (2011). https://doi.org/10.1039/C0NR00560F
  5. Y. Yan, X. Wang, H. Chen, L. Zhou, X. Cao and J. Zhang, J. Phys. D: Appl. Phys. 46, 155304 (2013). https://doi.org/10.1088/0022-3727/46/15/155304
  6. M. J. Bierman, Y. K. A. Lau, A. V. Kvit, A. L. Schmitt and S. Jin, Science 320, 1060 (2008). https://doi.org/10.1126/science.1157131
  7. J. Zhu, H. Peng, A. F. Marshall, D. M. Barnett, W. D. Nix and Y. Cui, Nature Nanotech. 3, 477 (2008). https://doi.org/10.1038/nnano.2008.179
  8. S. Baruah and J. Dutta, Sci. Technol. Adv. Mater. 10, 013001 (2009). https://doi.org/10.1088/1468-6996/10/1/013001
  9. N. Wang, Y. Cai and R. Q. Zhang, Mater. Sci. Eng. R 60, 1 (2008). https://doi.org/10.1016/j.mser.2008.01.001
  10. J. H. Kim, M. S. Lee and H. C. Kang, J. Korean Phys. Soc. 66, 229 (2015). https://doi.org/10.3938/jkps.66.229
  11. J. E. Boercker, J. B. Schmidt and E. S. Aydil, Crys. Growth Des. 9, 2783 (2009). https://doi.org/10.1021/cg900021u
  12. I. J. No, S. Lee, S. H. Kim, J. W. Cho and P. K. Shin, Jpn. J. Appl. Phys. 52, 025003 (2013). https://doi.org/10.7567/JJAP.52.025003
  13. S. H. Lee, J. S. Lee, W. B. Ko, J. I. Sohn, S. N. Cha, J. M. Kim, Y. J. Park and J. P. Hong, Appl. Phys. Exp. 5, 095002 (2012). https://doi.org/10.1143/APEX.5.095002
  14. E. Akatyeva and T. Dumitrica, Phys. Rev. Lett. 109, 035501 (2012). https://doi.org/10.1103/PhysRevLett.109.035501
  15. H.-Y. Hsiao, C.-M. Liu, H.-W. Lin, T.-C. Liu, C.-L. Lu, Y.-S. Huang, C. Chen and K. N. Tu, Science 336, 1007 (2012). https://doi.org/10.1126/science.1216511
  16. F. Meng, S. A. Morin, A. Forticaux and S. Jin, Accounts Chem. Res. 46, 1616 (2013). https://doi.org/10.1021/ar400003q
  17. S. A. Morin, and S. Jin, Nano Lett. 10, 3459 (2010). https://doi.org/10.1021/nl1015409
  18. S. A. Morin, M. J. Bierman, J. Tong and S. Jin, Science 328, 476 (2010). https://doi.org/10.1126/science.1182977
  19. J. Liu, Q. Huang, Y. Qian, Z. Huang, F. Lai, L. Lin, M. Guo, W. Zheng and Y. Qu, Cryst. Growth Des. 16, 2052 (2016). https://doi.org/10.1021/acs.cgd.5b01708
  20. J. Dai, J. Lu, F. Wang, J. Guo, N. Gu and C. Xu, ACS Appl. Mater. Interfaces 7, 12655 (2015). https://doi.org/10.1021/acsami.5b03069
  21. A. S. Baimuratov, I. D. Rukhlenko, Y. K. Gun'ko, A. V. Baranov and A. V. Fedorov, Nano. Lett. 15, 1710 (2015). https://doi.org/10.1021/nl504369x
  22. F. Meng, M. Estruga, A. Forticaux, S. A. Morin, Q. Wu, Z. Hu and S. Jin, ACS Nano 7, 11369 (2013). https://doi.org/10.1021/nn4052293
  23. X.-H. Zhang et al., Sci. Rep. 5, 10087 (2015). https://doi.org/10.1038/srep10087
  24. A. Zhuang, J.-J. Li, Y.-C. Wang, X. Wen, Y. Lin, B. Xiang, X. Wang and J. Zeng, Angew. Chem. Int. Ed. 53, 6425 (2014). https://doi.org/10.1002/anie.201403530
  25. W. K. Burton, N. Cabrera and C. Frank, Philos. Trans. R. Soc. London Ser. A 243, 299 (1951). https://doi.org/10.1098/rsta.1951.0006
  26. G.-R. Li, X.-H. Lu, D.-L. Qu, C.-Z. Yao, F.-l. Zheng, Q. Bu, C.-R. Dawa and Y.-X. Tong, J. Phys. Chem. C 111, 6678 (2007). https://doi.org/10.1021/jp068401+
  27. Y.-C. Tu, S.-J.Wang, T.-H. Lin, C.-H. Hung, T.-C. Tsai, R.-W. Wu, K.-M. Uang and T.-M. Chen, Intern. J. of Photoenergy 2015, 261372 (2015).
  28. Y. I. Jeong, C. M. Shin, J. H. Heo, H. Ryu, W. J. Lee, C. S. Son, and H. Choi, J. Korean Phys. Soc. 59, 2338 (2011). https://doi.org/10.3938/jkps.59.2338
  29. Y. Im, S. Kang, B. S. Kwak, K. S. Park, T. W. Cho, J.-S. Lee and M. Kang, Korean J. Chem. Eng. 33, 1447 (2016). https://doi.org/10.1007/s11814-015-0280-y
  30. R. H. Zhang, E. B. Slamovich and C. A. Handwerker, Nanotechnology 24, 195603 (2013). https://doi.org/10.1088/0957-4484/24/19/195603
  31. A. Forticaux, L. Dang, H. Liang and S. Jin, Nano Lett. 15, 3403 (2015). https://doi.org/10.1021/acs.nanolett.5b00758

Cited by

  1. 라디오주파수 분말 스퍼터링 방법으로 성장시킨 주석을 도핑한 산화아연 박막의 열처리 vol.31, pp.3, 2016, https://doi.org/10.12656/jksht.2018.31.3.111
  2. 수열합성법을 이용한 산화아연 나노와이어의 에피택시 성장 vol.31, pp.7, 2016, https://doi.org/10.4313/jkem.2018.31.7.502
  3. Effect of pH on the Structure of Calcium Phosphate Crystals Synthesized using a Hydrothermal Process vol.75, pp.7, 2016, https://doi.org/10.3938/jkps.75.514