DOI QR코드

DOI QR Code

Forecasting Possibility of Flood Occurrence in Suwon under Climate Change Applying Stochastic Simulation

확률론적 모의 기법을 활용한 기후변화에 따른 수원시 침수 발생가능성 지도 구축

  • Kim, Ji-Yeon (Urban & Environmental Research Group, Suwon Research Institute) ;
  • Sung, Sun-Yong (Interdisciplinary Program in Landscape Architecture, Seoul National University)
  • Received : 2016.01.29
  • Accepted : 2016.03.24
  • Published : 2016.04.30

Abstract

A natural risk common in urban areas, flooding caused by localized heavy rain has shown an increase under climate change. Thus, It is needed to consider future rainfall event derived from climate change scenario for establishing flood possibility maps. In this study, The stochastic approach was used to quantify the uncertainty in precipitation of future. Monte Carlo simulation was conducted to calculate precipitation distribution in 2030. The future flood possibility of Suwon was estimated by using Maximum Entropy (MaxEnt) applied the results of Monte Carlo simulation. Pyeong-dong in Gwonseon-gu would currently include the highest flood possibility, however, Top-dong would be the most risky areas in 2030. The uncertainty of flood possibility would be higher in Homaesil and Gwanggyo Newtown, whereas Paldal-gu and Northern Suwon have lower uncertainty. As the flood possibility in Seodun-dong would increase as much as 0.32 compared to current one, an adaptation strategy would be necessary for flood prevention. The flood possibility maps resulted from this study can be used to support decision-making for planning safer city.

Keywords

References

  1. 강상준.정주철, 2012. "수해지 분포 특성에 관한 연구: 경기도 사례를 중심으로", 대한토목학회논문집, 32(5D): 507-517. Kang, S-J and Jung, J-C, 2012. "Study on the Distribution Characteristics of Storm Damage Area : The Case of Gyeonggi-do", Journal of the Korean Society of Civil Engineers, 32(5D): 507-517. https://doi.org/10.12652/Ksce.2012.32.5D.507
  2. 경남발전연구원, 2013. 기후변화시대에 부응한 경남 도시홍수재해 저감 방안, 경남. Gyeongnam Development Institute, 2013. A study on urban flood disaster mitigation in Gyeongsang- namdo to Meet the era of climate change, Gyeongnam.
  3. 국립환경과학원, 2012. 2050 기후친화적 안전사회 모형 개발을 위한 기초연구, 서울. National Institute of Environmental Studies, 2012. A Basic Research on the 2050 Climate Friendly and Safe Society Model Development. Seoul.
  4. 국토교통부, 2011. 2013. 도시기본계획수립지침 개정안, 경기. Ministry of Land Infrastructure and Transport, 2011. 2013 Decree of Urban Planning Guideline, Gyeonggi.
  5. 김호걸.이동근.모용원.길승호.박찬.이수재, 2013. "MaxEnt 모형을 이용한 기후변화에 따른 산사태 발생가능성 예측", 환경영향평가, 22(1): 39-50. Kim, H-G, Lee, D-K, Mo, Y-W, Kil, S-H, Park, C, Lee, S-J, 2013, "Prediction of Landslides Occurrence Probability under Climate Change using MaxEnt Model", Journal of Environmental Impact Assessment, 22(1): 39-50. https://doi.org/10.14249/eia.2013.22.1.039
  6. 김효민.이동근.박찬, 2013. "MaxEnt를 이용한 서울시 도시홍수 적응능력 취약지역 선정에 관한 연구", 국토계획, 48(4): 205-217. Kim, H-M, Lee. D-K, Park, C, 2013. "A Study on Selection for Vulnerable Area of Urban Flooding Adaptable Capacity Using MaxEnt in Seoul", Journal of the Korea Planning Association, 48(4): 205-217.
  7. 배덕효.이문환, 2010. "기후변화에 따른 홍수취약성 평가와 사례 분석", 국토, 6: 20-31. Bae, D-H, Lee, M-H, 2010. "Flooding vulnerability assessment and case review due to climate change", Planning and policy, 6: 20-31.
  8. 수원시청, 2014. 수원시 풍수해저감종합계획 보고서, 수원. Suwon-si, 2014. Synthesis report on Natural Hazard Management, Suwon.
  9. 정대일.제리 스테딘져.성장현.김영오, 2008. "기후 변화를 고려한 홍수 위험도 평가", 대한토목학회논문집 B, 28(1B): 55-64. Jeong, D-I, Jery, R., Sung, J-H, Kim, Y-O, 2008, "Flood risk assessment with climate change", Journal of the korean society of civil engineers, 28(1B): 55-64.
  10. 한우석.심우배.이병재.유재환, 2012. "기후변화에 따른 홍수에 대한 지자체 기반시설 취약성 평가 방법 제시", 한국기후변화학회지, 3(1), 25-37. Han, W-S, Sim, O-B, Lee, B-J, Yoo, J-H, 2012. "The proposal of evaluation method for local government infrastructure vulnerability relating to climate change driven flood", Journal of Climate Change Research, 3(1):25-37
  11. 환경부, 2011. 침수대응 하수도 시뮬레이션 가이드라인 마련 연구, 서울. Ministry of Environment, 2011. Development Sewage System Simulation Guideline to Respond Inundation, Seoul.
  12. 황연상.정영훈.임광섭.허준행, 2010. "강우-유출 모형 적용을 위한 강우 내삽법 비교 및 2단계 일 강우 내삽법의 개발", 한국수자원학회, 43(12): 1083-1091. Hwang, Y-S, Jung, Y-H, Lim, K-S, Heo, J-H, 2010. "Comparison of Daily Rainfall Interpolation Techniques and Development of Two Step Technique for Rainfall-Runoff Modeling", Journal of Korea Water Resources Association, 43(12): 1083-1091.
  13. Alfieri, L., Feyen, L., Dottori, F., Bianchi, A., 2015. "Ensemble flood risk assessment in Europe under high end climate scenarios", Global Environmental Change, 35:199-212 https://doi.org/10.1016/j.gloenvcha.2015.09.004
  14. Arnell, N., W., Lloyd-Hughes, B., 2014. "The global-scale impacts of climate change on water resources and flooding under new climate and socio-economic scenarios", Climatic change, 122(1):127-140 https://doi.org/10.1007/s10584-013-0948-4
  15. Galasso C., Senarath S., 2014. "A Statistical Model for Flood Depth Estimation in Southeast Europe, Vulnerability, Uncertainty, and Risk", ASCE, 2014: 1415-1424.
  16. Hinkel, J., Lincke, D., Vafeidis, A., Perrette, M., Nicholls, J. R., Tol, S. J. R., Marzeion, B., Fettweis, X., Ionescu, C., Levermann, A., 2014. "Coastal flood damage and adaptation costs under 21st century sea-level rise", Proceedings of the National Academy of Science of the United States of America, 111(9):3292-3297 https://doi.org/10.1073/pnas.1222469111
  17. Huong H.T.L. and Pathirana A., 2012. "Urbanization and climate change impacts on future urban flooding in Can Tho city, Vietnam", Hydrol. Earth Syst. Sci., 17: 379-394.
  18. IPCC, 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, United Kingdom and New York: Cambridge University Press.
  19. Leutbecher M., and Palmer T.N., 2008. "Ensemble forecasting", Journal of computational physics, 227: 3515-3539. https://doi.org/10.1016/j.jcp.2007.02.014
  20. New, M., Hulme, M., 2000. Representing uncertainty in climate change scenarios: a Monte-Carlo approach. Integrated Assessment 1(3): 203-213. https://doi.org/10.1023/A:1019144202120
  21. Storch H., Downes N., Katzschner L., Thinh N., 2011. "Building resilience to climate change through adaptive land use planning in Ho Chi Minh city, Vietnam", Local sustainability, 1: 349-363.
  22. Subtil F., Rabilloud M., 2015. "An enhancement of ROC curves made them clinically relevant for diagnostic-test comparison and optimalthreshold determination", Journal of Clinical Epidemiology (in Press)
  23. Tebaldi C., Knutti R., 2007. "The use of the multi-model ensemble in probabilistic climate projections determination", Phil. Trans. R. Soc. A, 365: 2053-2075. https://doi.org/10.1098/rsta.2007.2076
  24. Vorpahl P., Helmut E., Michael M. and Boris S., 2012. "How can statistical models help to determine driving factors of landslides?", Ecological Modelling, 239: 27-39. https://doi.org/10.1016/j.ecolmodel.2011.12.007
  25. Walker W.E., Harremoes P., Rotmans J., Sluijs J.P., Asselt M.B.A., Janssen P., Krayer von Krauss M.P., 2003. "Defining uncertainty: A conceptual basis for uncertainty management in model-based decision support", Integrated Assessment, 4(1): 5-17. https://doi.org/10.1076/iaij.4.1.5.16466
  26. Young N., Carter L., Evangelista P. A., 2011. A MaxEnt Model v3.3.3e Tutorial (ArcGIS v10), Colorado, USA: Natural Resource Ecology Laboratory at Colorado State University and the National Institute of Invasive Species Science.