DOI QR코드

DOI QR Code

Technical Developments and Trends of Earthquake Resisting High-Strength Reinforcing Steel Bars

내진용 고강도 철근의 제조와 기술 개발 동향

  • Hwang, Byoungchul (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Shim, Jae-Hyeok (High Temperature Energy Materials Research Center, Korea Institute of Science and Technology) ;
  • Lee, Myoung-Gyu (Department of Materials Science and Engineering, Korea University) ;
  • Lee, Joonho (Department of Materials Science and Engineering, Korea University) ;
  • Jung, Jun-Ho (Hyundai Steel) ;
  • Kim, Bo-Sung (Daehan Steel) ;
  • Won, Sung-Bin (Dongkuk Steel)
  • 황병철 (서울과학기술대학교 신소재공학과) ;
  • 심재혁 (한국과학기술연구원 고온에너지재료연구센터) ;
  • 이명규 (고려대학교 신소재공학부) ;
  • 이준호 (고려대학교 신소재공학부) ;
  • 정준호 (현대제철 전기로제품개발1팀) ;
  • 김보성 (대한제강 생산관리팀) ;
  • 원성빈 (동국제강 봉형강연구팀)
  • Received : 2016.09.20
  • Accepted : 2016.09.26
  • Published : 2016.12.05

Abstract

Since reconstruction of old town in Korea requires high-rise and seismic design construction, many attentions have been paid to high strength seismic reinforced steel bar. In the present paper, technical developments and trends are summarized for developing next-generation seismic reinforced steel bar of grade 700 MPa. Steelmaking process requires high energy efficiency and refining ability. Effects of alloying elements are explained, and alloy design based on computational thermodynamics is introduced. On the other hand, it is considered that grain size refinement by the controlled rolling and low temperature transformation structures formed by the accelerated cooling are effective to obtain acceptable mechanical properties with high strength. Finite element simulation analysis is also useful to understand plastic deformation by rolling, internal and external heat transfer, and corresponding phase transformation of austenite phase to various low-temperature transformation structures.

Keywords

Acknowledgement

Grant : 사회 안전 확보를 위한 700 MPa 급 철근 활용 내진용 철근콘크리트 개발

Supported by : 산업통상자원부

References

  1. KS D 3504, Steel bars for concrete reinforcement, Korean Agency for Technology and Standards (2016).
  2. J. Lee, D. J. Min, J. H. Lee, Y. S. Yoon, H. C. Song, Y. Kim and B. Hwang, Research report - Strategy of national standardization of reinforced bars for building a sustainable and low-energy consuming society, Korea University Research & Business Foundation (2015).
  3. D. W. Kim, Fundamentals of Reinforced Bars, Steel & Metals News (2012).
  4. S. Lee, H. Lee, C. Park, K. Woo and Y. Suh, Magazine of the Korea Concrete Institute 22, 28 (2010).
  5. ASTM A615/A615M-15, Standard Specification Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement, p.8, American Association State Highway and Transportation Officials Standard (2015).
  6. ASTM A706/A706M-14, Standard Specification for Deformed and Plain Low-Alloy Steel Bars for Concrete Reinforcement, p.7, American Association State Highway and Transportation Officials Standard (2014).
  7. B. Lee and I. Sohn, JOM 66, 1581 (2014). https://doi.org/10.1007/s11837-014-1092-y
  8. J. Ki, The 43rd Steel Technology Symposium - Sustainable EAF Processing Technology, pp.101-110, Korean Inst. Metals & Mater., Pohang, Korea (2008).
  9. H. G. Lee, Bull. Korean Inst. Met. Mater. 11, 371 (1998).
  10. J. Jones, The 43rd Steel Technology Symposium - Sustainable EAF Processing Technology, pp. 31-76, Korean Inst. Metals & Mater., Pohang, Korea (2008).
  11. Y. Zhang and R. J. Fruehan, Metall. Mater. Trans. B 26, 803 (1995). https://doi.org/10.1007/BF02651727
  12. H. S. Kim, D. J. Min and J. H. Park, ISIJ Int. 41, 317 (2001). https://doi.org/10.2355/isijinternational.41.317
  13. N. Sano, W. K. Lu, R. V. Riboud and M. Maeda, Advanced Physical Chemistry for Process Metallurgy, Academic Press, San Diego (1997).
  14. M. K. Cho, K. H. Park and D. J. Min, Korean J. Met. Mater. 47, 188 (2009).
  15. M. Uo, E. Sakurai, F. Tsukihashi and N. Sano, Steel Res. 60, 496 (1989). https://doi.org/10.1002/srin.198901692
  16. B. Lee and I. Sohn, ISIJ Int. 55, 491 (2015). https://doi.org/10.2355/isijinternational.55.491
  17. H. Matsuura and R. J. Fruehan, ISIJ Int. 49, 1530 (2009). https://doi.org/10.2355/isijinternational.49.1530
  18. Atlas Specialty Metals, Technical Handbook of Bar Products, http://www.atlassteels.com.au (2005).
  19. L. Kaufman and H. Bernstein, Computer Calculation of Phase Diagrams, Academic Press, New York (1970).
  20. B. Sundman, B. Jansson and J. O. Andersson, Calphad 9, 153 (1985). https://doi.org/10.1016/0364-5916(85)90021-5
  21. E. Kozeschnik, J. Svoboda, P. Fratzl and F. D. Fischer, Mater. Sci. Eng. A 385, 157 (2004).
  22. Sente Software Ltd., JMatPro, http://www.sentesoftware.co.uk (2016).
  23. I. Tamura, H. Sekine, T. Tanaka and C. Ouchi, Thermomechanical Processing of High-strength Low-alloy Steels, Butterworths & Co. Ltd. (1988).
  24. T. Gladman, The Physical Metallurgy of Microalloyed Steels, The Institute of Materials, London (1997).
  25. D. L. Lee, S. J. Yoo and W. Y. Choo, Trends in Metals & Materials Engineering 13, 17 (2000).
  26. B. Hwang, C. G. Lee, S. Lee and C. H. Lee, Trends in Metals & Materials Engineering 22, 28 (2009).
  27. W. C. Kan, M. W. Weir, M. M. Zhang, D. B. Lillig, S. T. Barbas, M. L. Macia and N. E. Biery, Proceedings of the Eighteenth International Offshore and Polar Engineering Conference, pp. 174-181, Vancouver, BC, Canada (2008).
  28. B. Hwang, C. G. Lee and S. J. Kim, Metall. Mater. Trans. A 42, 717 (2011). https://doi.org/10.1007/s11661-010-0448-3
  29. S. K. Banerji and J. E. Morral, Proc. Int. Symp. Boron in Steels, TMS-AIME, PA (1979).
  30. L. Karlsson, H. Norden and H. Odelius, Acta Metall. 36, 1 (1988). https://doi.org/10.1016/0001-6160(88)90023-5
  31. H. Asahi, ISIJ Int. 42, 1150 (2002). https://doi.org/10.2355/isijinternational.42.1150
  32. B. Hwang and D. W. Suh, Kor. J. Mater. Res. 23, 555 (2013). https://doi.org/10.3740/MRSK.2013.23.10.555
  33. C. C. Liu, X. J. Xu and Z. Liu, Finite Elem. Anal. Des. 39, 1053 (2003). https://doi.org/10.1016/S0168-874X(02)00156-7
  34. G. Krauss, Tempering of martensite in carbon steels, Woodhead Publishing Ltd. (2012).
  35. E. J. Mittemeijer, J. Mater. Sci. 27, 3977 (1992). https://doi.org/10.1007/BF01105093
  36. H. N. Han and S. H. Park, Mater. Sci. Tech. 17, 721 (2001). https://doi.org/10.1179/026708301101510447
  37. S. N. Kim, J. Lee, F. Barlat and M. G. Lee, Acta Mater. 109, 394 (2016). https://doi.org/10.1016/j.actamat.2015.11.051
  38. T. Waterschoot, K. Verbeken and B. C. De Cooman, ISIJ Int. 46, 138 (2006). https://doi.org/10.2355/isijinternational.46.138
  39. D. P. Koistinen and R. E. Marburger, Acta Met. 7, 59 (1959). https://doi.org/10.1016/0001-6160(59)90170-1
  40. X. Deng and D. Ju, Phys. Procedia 50, 368 (2013). https://doi.org/10.1016/j.phpro.2013.11.057
  41. J. Y. Yu, S.-S. Jung and I. Sohn, Korean J. Met. Mater. 53, 35 (2015). https://doi.org/10.3365/KJMM.2014.53.1.35
  42. S. B. An, M. Shin, K. J. Sim and J. Lee, Met. Mater. Int. 20, 351 (2014). https://doi.org/10.1007/s12540-014-2015-8