DOI QR코드

DOI QR Code

Perilla frutescens var. japonica and rosmarinic acid improve amyloid-β25-35 induced impairment of cognition and memory function

  • Lee, Ah Young (Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University) ;
  • Hwang, Bo Ra (Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University) ;
  • Lee, Myoung Hee (Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Lee, Sanghyun (Department of Integrative Plant Science, Chung-Ang University) ;
  • Cho, Eun Ju (Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University)
  • Received : 2015.09.16
  • Accepted : 2015.12.04
  • Published : 2016.06.01

Abstract

BACKGROUND/OBJECTIVES: The accumulation of amyloid-${\beta}$ ($A{\beta}$) in the brain is a hallmark of Alzheimer's disease (AD) and plays a key role in cognitive dysfunction. Perilla frutescens var. japonica extract (PFE) and its major compound, rosmarinic acid (RA), have shown antioxidant and anti-inflammatory activities. We investigated whether administration of PFE and RA contributes to cognitive improvement in an $A{\beta}_{25-35}$-injected mouse model. MATERIALS/METHODS: Male ICR mice were intracerebroventricularly injected with aggregated $A{\beta}_{25-35}$ to induce AD. $A{\beta}_{25-35}$-injected mice were fed PFE (50 mg/kg/day) or RA (0.25 mg/kg/day) for 14 days and examined for learning and memory ability through the T-maze, object recognition, and Morris water maze test. RESULTS: Our present study demonstrated that PFE and RA administration significantly enhanced cognition function and object discrimination, which were impaired by $A{\beta}_{25-35}$, in the T-maze and object recognition tests, respectively. In addition, oral administration of PFE and RA decreased the time to reach the platform and increased the number of crossings over the removed platform when compared with the $A{\beta}_{25-35}$-induced control group in the Morris water maze test. Furthermore, PFE and RA significantly decreased the levels of nitric oxide (NO) and malondialdehyde (MDA) in the brain, kidney, and liver. In particular, PFE markedly attenuated oxidative stress by inhibiting production of NO and MDA in the $A{\beta}_{25-35}$-injected mouse brain. CONCLUSIONS: These results suggest that PFE and its active compound RA have beneficial effects on cognitive improvement and may help prevent AD induced by $A{\beta}$.

Keywords

References

  1. Collerton D. Cholinergic function and intellectual decline in Alzheimer's disease. Neuroscience 1986;19:1-28. https://doi.org/10.1016/0306-4522(86)90002-3
  2. Golde TE, Eckman CB, Younkin SG. Biochemical detection of $A{\beta}$ isoforms: implications for pathogenesis, diagnosis, and treatment of Alzheimer's disease. Biochim Biophys Acta 2000;1502:172-87. https://doi.org/10.1016/S0925-4439(00)00043-0
  3. Sambamurti K, Greig NH, Lahiri DK. Advances in the cellular and molecular biology of the beta-amyloid protein in Alzheimer's disease. Neuromolecular Med 2002;1:1-31. https://doi.org/10.1385/NMM:1:1:1
  4. Harman D. Free radical theory of aging: Alzheimer's disease pathogenesis. Age (Omaha) 1995;18:97-119. https://doi.org/10.1007/BF02436085
  5. Gotz J, Ittner LM. Animal models of Alzheimer's disease and frontotemporal dementia. Nat Rev Neurosci 2008;9:532-44. https://doi.org/10.1038/nrn2420
  6. Takuma K, Yao J, Huang J, Xu H, Chen X, Luddy J, Trillat AC, Stern DM, Arancio O, Yan SS. ABAD enhances $A{\beta}$-induced cell stress via mitochondrial dysfunction. FASEB J 2005;19:597-8. https://doi.org/10.1096/fj.04-2582fje
  7. Zussy C, Brureau A, Delair B, Marchal S, Keller E, Ixart G, Naert G, Meunier J, Chevallier N, Maurice T, Givalois L. Time-course and regional analyses of the physiopathological changes induced after cerebral injection of an amyloid $\beta$ fragment in rats. Am J Pathol 2011;179:315-34. https://doi.org/10.1016/j.ajpath.2011.03.021
  8. Honda G, Koezuka Y, Kamisako W, Tabata M. Isolation of sedative principles from Perilla frutescens. Chem Pharm Bull (Tokyo) 1986;34:1672-7. https://doi.org/10.1248/cpb.34.1672
  9. Kurita N, Koike S. Synergistic antimicrobial effect of sodium chloride and essential oil components. Agric Biol Chem 1982;46:159-65.
  10. Kim MK, Lee HS, Kim EJ, Won NH, Chi YM, Kim BC, Lee KW. Protective effect of aqueous extract of Perilla frutescens on tert-butyl hydroperoxide-induced oxidative hepatotoxicity in rats. Food Chem Toxicol 2007;45:1738-44. https://doi.org/10.1016/j.fct.2007.03.009
  11. Gao LP, Wei HL, Zhao HS, Xiao SY, Zheng RL. Antiapoptotic and antioxidant effects of rosmarinic acid in astrocytes. Pharmazie 2005;60:62-5.
  12. Takano H, Osakabe N, Sanbongi C, Yanagisawa R, Inoue K, Yasuda A, Natsume M, Baba S, Ichiishi E, Yoshikawa T. Extract of Perilla frutescens enriched for rosmarinic acid, a polyphenolic phytochemical, inhibits seasonal allergic rhinoconjunctivitis in humans. Exp Biol Med (Maywood) 2004;229:247-54. https://doi.org/10.1177/153537020422900305
  13. Lamaison JL, Petitjean-Freytet C, Carnat A. Rosmarinic acid, total hydroxycinnamic derivatives and antioxidant activity of Apiaceae, Borraginaceae and Lamiceae medicinals. Ann Pharm Fr 1990;48:103-8.
  14. Maurice T, Lockhart BP, Privat A. Amnesia induced in mice by centrally administered $\beta$-amyloid peptides involves cholinergic dysfunction. Brain Res 1996;706:181-93. https://doi.org/10.1016/0006-8993(95)01032-7
  15. Laursen SE, Belknap JK. Intracerebroventricular injections in mice. Some methodological refinements. J Pharmacol Methods 1986;16:355-7. https://doi.org/10.1016/0160-5402(86)90038-0
  16. Montgomery KC. A test of two explanations of spontaneous alternation. J Comp Physiol Psychol 1952;45:287-93. https://doi.org/10.1037/h0058118
  17. Bevins RA, Besheer J. Object recognition in rats and mice: a one-trial non-matching-to-sample learning task to study 'recognition memory'. Nat Protoc 2006;1:1306-11. https://doi.org/10.1038/nprot.2006.205
  18. Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 1984;11:47-60. https://doi.org/10.1016/0165-0270(84)90007-4
  19. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979;95:351-8. https://doi.org/10.1016/0003-2697(79)90738-3
  20. Schmidt HH, Warner TD, Nakane M, Forstermann U, Murad F. Regulation and subcellular location of nitrogen oxide synthases in RAW264.7 macrophages. Mol Pharmacol 1992;41:615-24.
  21. Pike CJ, Walencewicz AJ, Glabe CG, Cotman CW. In vitro aging of $\beta$-amyloid protein causes peptide aggregation and neurotoxicity. Brain Res 1991;563:311-4. https://doi.org/10.1016/0006-8993(91)91553-D
  22. Yankner BA, Duffy LK, Kirschner DA. Neurotrophic and neurotoxic effects of amyloid beta protein: reversal by tachykinin neuropeptides. Science 1990;250:279-82. https://doi.org/10.1126/science.2218531
  23. Butterfield DA, Drake J, Pocernich C, Castegna A. Evidence of oxidative damage in Alzheimer's disease brain: central role for amyloid $\beta$-peptide. Trends Mol Med 2001;7:548-54. https://doi.org/10.1016/S1471-4914(01)02173-6
  24. Ramassamy C. Emerging role of polyphenolic compounds in the treatment of neurodegenerative diseases: a review of their intracellular targets. Eur J Pharmacol 2006;545:51-64. https://doi.org/10.1016/j.ejphar.2006.06.025
  25. Albarracin SL, Stab B, Casas Z, Sutachan JJ, Samudio I, Gonzalez J, Gonzalo L, Capani F, Morales L, Barreto GE. Effects of natural antioxidants in neurodegenerative disease. Nutr Neurosci 2012;15:1-9. https://doi.org/10.1179/1476830511Y.0000000028
  26. Takahashi Y. Handbook of Modern Chinese Medicine II. Tokyo: Yakkyoku Shimbun; 1969.
  27. Osakabe N, Yasuda A, Natsume M, Yoshikawa T. Rosmarinic acid inhibits epidermal inflammatory responses: anticarcinogenic effect of Perilla frutescens extract in the murine two-stage skin model. Carcinogenesis 2004;25:549-57.
  28. Okuda T, Hatano T, Agata I, Nishibe S. The components of tannic activities in Labiatae plants. I. Rosmarinic acid from Labiatae plants in Japan. Yakugaku Zasshi 1986;106:1108-11. https://doi.org/10.1248/yakushi1947.106.12_1108
  29. Ishikura N. Anthocyanins and flavones in leaves and seeds of Perilla plant. Agric Biol Chem 1981;45:1855-60.
  30. Ono K, Hasegawa K, Naiki H, Yamada M. Curcumin has potent anti-amyloidogenic effects for Alzheimer's beta-amyloid fibrils in vitro. J Neurosci Res 2004;75:742-50. https://doi.org/10.1002/jnr.20025
  31. Makino T, Ono T, Matsuyama K, Nogaki F, Miyawaki S, Honda G, Muso E. Suppressive effects of Perilla frutescens on IgA nephropathy in HIGA mice. Nephrol Dial Transplant 2003;18:484-90. https://doi.org/10.1093/ndt/18.3.484
  32. Alkam T, Nitta A, Mizoguchi H, Itoh A, Nabeshima T. A natural scavenger of peroxynitrites, rosmarinic acid, protects against impairment of memory induced by $A{\beta}(25-35)$. Behav Brain Res 2007;180:139-45. https://doi.org/10.1016/j.bbr.2007.03.001
  33. Pereira P, Tysca D, Oliveira P, da Silva Brum LF, Picada JN, Ardenghi P. Neurobehavioral and genotoxic aspects of rosmarinic acid. Pharmacol Res 2005;52:199-203. https://doi.org/10.1016/j.phrs.2005.03.003
  34. Murai T, Okuda S, Tanaka T, Ohta H. Characteristics of object location memory in mice: behavioral and pharmacological studies. Physiol Behav 2007;90:116-24. https://doi.org/10.1016/j.physbeh.2006.09.013
  35. Hsia AY, Masliah E, McConlogue L, Yu GQ, Tatsuno G, Hu K, Kholodenko D, Malenka RC, Nicoll RA, Mucke L. Plaque-independent disruption of neural circuits in Alzheimer's disease mouse models. Proc Natl Acad Sci U S A 1999;96:3228-33. https://doi.org/10.1073/pnas.96.6.3228
  36. Palop JJ, Chin J, Mucke L. A network dysfunction perspective on neurodegenerative diseases. Nature 2006;443:768-73. https://doi.org/10.1038/nature05289
  37. Baluchnejadmojarad T, Roghani M, Homayounfar H. Inhibitory effect of high dose of the flavonoid quercetin on amygdala electrical kindling in rats. Basic Clin Neurosci 2010;1:57-61.
  38. Butterfield DA, Lauderback CM. Lipid peroxidation and protein oxidation in Alzheimer's disease brain: potential causes and consequences involving amyloid $\beta$-peptide-associated free radical oxidative stress. Free Radic Biol Med 2002;32:1050-60. https://doi.org/10.1016/S0891-5849(02)00794-3
  39. Cecchi C, Fiorillo C, Baglioni S, Pensalfini A, Bagnoli S, Nacmias B, Sorbi S, Nosi D, Relini A, Liguri G. Increased susceptibility to amyloid toxicity in familial Alzheimer's fibroblasts. Neurobiol Aging 2007;28:863-76. https://doi.org/10.1016/j.neurobiolaging.2006.05.014
  40. Palmer AM, Burns MA. Selective increase in lipid peroxidation in the inferior temporal cortex in Alzheimer's disease. Brain Res 1994;645:338-42. https://doi.org/10.1016/0006-8993(94)91670-5
  41. Galasko D, Montine TJ. Biomarkers of oxidative damage and inflammation in Alzheimer's disease. Biomarkers Med 2010;4:27-36. https://doi.org/10.2217/bmm.09.89
  42. Mattson MP, Begley JG, Mark RJ, Furukawa K. $A{\beta}25-35$ induces rapid lysis of red blood cells: contrast with $A{\beta}1-42$ and examination of underlying mechanisms. Brain Res 1997;771:147-53. https://doi.org/10.1016/S0006-8993(97)00824-X
  43. Smith MA, Sayre LM, Monnier VM, Perry G. Radical ageing in Alzheimer's disease. Trends Neurosci 1995;18:172-6. https://doi.org/10.1016/0166-2236(95)93897-7
  44. Choi JY, Cho EJ, Lee HS, Lee JM, Yoon YH, Lee S. Tartary buckwheat improves cognition and memory function in an in vivo amyloid-$\beta$-induced Alzheimer model. Food Chem Toxicol 2013;53:105-11. https://doi.org/10.1016/j.fct.2012.11.002
  45. Choi JY, Lee JM, Lee DG, Cho S, Yoon YH, Cho EJ, Lee S. The n-butanol fraction and rutin from tartary buckwheat improve cognition and memory in an in vivo model of amyloid-$\beta$-induced Alzheimer's disease. J Med Food 2015;18:631-41. https://doi.org/10.1089/jmf.2014.3292
  46. Lee AY, Yamabe N, Kang KS, Kim HY, Lee S, Cho EJ. Cognition and memory function of Taraxacum coreanum in an in vivo amyloid-$\beta$-induced mouse model of Alzheimer's disease. Arch Biol Sci (Bologna) 2014;66:1357-66. https://doi.org/10.2298/ABS1404357L
  47. Schirrmacher G, Skurk T, Hauner H, Grassmann J. Effect of Spinacia oleraceae L. and Perilla frutescens L. on antioxidants and lipid peroxidation in an intervention study in healthy individuals. Plant Foods Hum Nutr 2010;65:71-6. https://doi.org/10.1007/s11130-009-0152-x
  48. Iuvone T, De Filippis D, Esposito G, D'Amico A, Izzo AA. The spice sage and its active ingredient rosmarinic acid protect PC12 cells from amyloid-$\beta$ peptide-induced neurotoxicity. J Pharmacol Exp Ther 2006;317:1143-9. https://doi.org/10.1124/jpet.105.099317
  49. Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 1996;271:C1424-37. https://doi.org/10.1152/ajpcell.1996.271.5.C1424
  50. Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis 2010;37:13-25. https://doi.org/10.1016/j.nbd.2009.07.030
  51. Jancso G, Domoki F, Santha P, Varga J, Fischer J, Orosz K, Penke B, Becskei A, Dux M, Toth L. $\beta$-Amyloid (1-42) peptide impairs blood-brain barrier function after intracarotid infusion in rats. Neurosci Lett 1998;253:139-41. https://doi.org/10.1016/S0304-3940(98)00622-3
  52. Schwab C, McGeer PL. Inflammatory aspects of Alzheimer disease and other neurodegenerative disorders. J Alzheimers Dis 2008;13:359-69. https://doi.org/10.3233/JAD-2008-13402
  53. Fale PL, Madeira PJ, Florencio MH, Ascensao L, Serralheiro ML. Function of Plectranthus barbatus herbal tea as neuronal acetylcholinesterase inhibitor. Food Funct 2011;2:130-6. https://doi.org/10.1039/C0FO00070A
  54. Lebrun C, Pilliere E, Lestage P. Effects of S 18986-1, a novel cognitive enhancer, on memory performances in an object recognition task in rats. Eur J Pharmacol 2000;401:205-12. https://doi.org/10.1016/S0014-2999(00)00429-5

Cited by

  1. reverses memory deficits in Aβ1-42-induced an animal model of Alzheimer's disease vol.22, pp.1, 2017, https://doi.org/10.1111/jcmm.13299
  2. Xanthoceraside modulates NR2B-containing NMDA receptors at synapses and rescues learning-memory deficits in APP/PS1 transgenic mice pp.1432-2072, 2017, https://doi.org/10.1007/s00213-017-4775-6
  3. Molecular Pharmacology of Rosmarinic and Salvianolic Acids: Potential Seeds for Alzheimer’s and Vascular Dementia Drugs vol.19, pp.2, 2018, https://doi.org/10.3390/ijms19020458
  4. Bioactive Compounds in Kimchi Improve the Cognitive and Memory Functions Impaired by Amyloid Beta vol.10, pp.10, 2018, https://doi.org/10.3390/nu10101554
  5. Inhibition of protein misfolding and aggregation by natural phenolic compounds vol.75, pp.19, 2018, https://doi.org/10.1007/s00018-018-2872-2
  6. vol.2018, pp.1687-9430, 2018, https://doi.org/10.1155/2018/1782734
  7. Bioactive Compounds of Kimchi Inhibit Apoptosis by Attenuating Endoplasmic Reticulum Stress in the Brain of Amyloid β-Injected Mice vol.66, pp.19, 2018, https://doi.org/10.1021/acs.jafc.8b01686
  8. Neuroprotective effects of Levisticum officinale on LPS-induced spatial learning and memory impairments through neurotrophic, anti-inflammatory, and antioxidant properties vol.11, pp.7, 2016, https://doi.org/10.1039/d0fo01030h
  9. Rosmarinic Acid Alleviates Inflammation, Apoptosis, and Oxidative Stress through Regulating miR-155-5p in a Mice Model of Parkinson’s Disease vol.11, pp.20, 2020, https://doi.org/10.1021/acschemneuro.0c00375
  10. Chitosan-coated rosmarinic acid nanoemulsion nasal administration protects against LPS-induced memory deficit, neuroinflammation, and oxidative stress in Wistar rats vol.141, pp.None, 2016, https://doi.org/10.1016/j.neuint.2020.104875
  11. Effects of the fermented Zizyphus jujuba in the amyloid β25-35-induced Alzheimer's disease mouse model vol.15, pp.2, 2021, https://doi.org/10.4162/nrp.2021.15.2.173
  12. 스코폴라민으로 유도한 기억력 손상 모델에서 소엽 추출물의 보호 효과 vol.35, pp.3, 2016, https://doi.org/10.15188/kjopp.2021.06.35.3.97
  13. Rosmarinic acid suppresses tau phosphorylation and cognitive decline by downregulating the JNK signaling pathway vol.5, pp.1, 2016, https://doi.org/10.1038/s41538-021-00084-5
  14. Mahanimbine Improved Aging-Related Memory Deficits in Mice through Enhanced Cholinergic Transmission and Suppressed Oxidative Stress, Amyloid Levels, and Neuroinflammation vol.12, pp.1, 2016, https://doi.org/10.3390/brainsci12010012
  15. Involvement of the adenosine A1 receptor in the hypnotic effect of rosmarinic acid vol.146, pp.None, 2022, https://doi.org/10.1016/j.biopha.2021.112483