DOI QR코드

DOI QR Code

Consequence Analysis and Risk Reduction Methods for Propulsion Test Facility

추진시험설비의 사고피해영향분석 및 리스크 감소방안

  • Shin, Ahn-Tae (Department of NARO Space Center, Korea Aerospace Research Institute) ;
  • Byun, Hun-Soo (Department of Chemical and Biomolecular Engineering, Chonnam National University)
  • 신안태 (한국항공우주연구원 나로우주센터) ;
  • 변헌수 (전남대학교 화공생명공학과)
  • Received : 2016.01.28
  • Accepted : 2016.03.02
  • Published : 2016.06.01

Abstract

The Propulsion Test Facilities for the development of Korea Space Launch Vehicle-II are being built, some test facilities are completed and various combustion tests are running. The Propulsion Test Facilities consists test-stand, which carries out tests for engine development model, and various sub-systems and vessels containing LOX and Jet A-1 as propellant. There are always risks of fire and explosion at the test-stand since engine development model is conducted at test-stand with real combustion test with very high pressure, mixed propellant and high energy. In this paper, in order to establish the consequence analysis and risk reduction measures in the Propulsion Test Facilities, followings are considered. 1) a propellant leak accident scenario is assumed in test-stand. 2) TNT equivalent model equation based on blast wave of the explosion was used to analyze blast overpressure and impacts. Also, technical, systematic and managemental measure is described to ensure risk reduction for propulsion test facility.

한국형발사체 개발을 위한 추진시험설비가 구축되고 있으며, 일부 시험설비는 구축이 완료되어 추진기관시험을 실시하고 있다. 추진시험설비의 구성은 엔진 시험체 등의 시험을 실시하는 테스트 스탠드와 추진제로 사용되는 케로신(Jet A-1) 및 액체산소(LOX) 등을 저장하는 설비 등 다양한 서브시스템과 부품들이 연결되어 있다. 테스트 스탠드는 엔진개발모델이 장착되고 추진제가 혼합되어 실제 연소가 이루어지는 곳으로서 큰 에너지긴장도 상태에서 고압으로 작동되는 추진시험설비의 특성상 화재 폭발의 위험성이 존재한다. 본 논문에서는 추진시험설비의 사고피해영향분석 및 리스크 감소방안을 수립하기 위하여, 테스트 스텐드에서의 추진제 누설사고 시나리오를 가정하고, TNT당량모델 실험식을 적용하여 폭발과압에 대한 사고피해영향을 분석하였고, 추진시험설비의 안전성 확보를 위한 리스크 감소방안에 대하여 기술적, 제도적, 관리적 안전대책에 대하여 제시하였다.

Keywords

References

  1. Cho, N. K., Yu, B. I., Kim, J. H., Han, Y. M. and Jun, S. B., "Infrastructure of Propulsion System Test Complex for KSLV-II," Proceedings of the Korean Society of Propulsion Engineers Conference, 40, 179-182(2013).
  2. Kim, S. H., Bershadskiy, V. A. and Oh, S. H., "Methods for Reduction of Danger in Cases of Functioning on Rocket Fuel of Test Stand," Proceedings of the Korea Institute of Fire Science and Engineering Conference, 33, 405-408(2011).
  3. Lee, I. J. and Kim, R. H., "Safety Enhancement of LPG Terminal by LOPA & SIF Method," Korean Chem. Eng. Res., 53(4), 431-439(2015). https://doi.org/10.9713/kcer.2015.53.4.431
  4. Kim, I. H., Dan, S., Cho, S., Lee, G. and Yoon, E. S., "Optimization of Single-stage Mixed Refrigerant LNG Process Considering Inherent Explosion Risks," Korean Chem. Eng. Res., 52(4), 467-474(2014). https://doi.org/10.9713/kcer.2014.52.4.467
  5. Yang, J. M., Seol, J. W., Yong, J. W., Ko, S. W., Park, C. Yoo, B. and Ko, J. W., "A Method to Develop for Emergency Guidelines using Business Continuity Plan in Chemical Plant," Korean Chem. Eng. Res., 52(6), 743-749(2014). https://doi.org/10.9713/kcer.2014.52.6.743
  6. Korea Aerospace Research Institute, "Jet A-1 Material Safety Data Sheet," MSDS-1027, Korea(2014).
  7. Korea Aerospace Research Institute, "Liquid Oxygen Material Safety Data Sheet," MSDS-1073, Korea(2014).
  8. Shin, B. W. and Shin, M. H., "Combustion Characteristics of the Liquid Fuel for KSLV-II," Korea Aerospace Research Institute, Korea(2014).
  9. Occupational Safety & Health Research Institute, "A Study on the Research in Risk Assessment Methods," Korea(2013).
  10. Lee, K. J., Lim, B. J., Seo, S. Y., Han, Y. M. and Choi, H. S., "Sub-System Requirements of a Pressure-fed Hot-firing Test Facility for the Performance Assessment of a LRE Thrust Chamber," Journal of the Korean Society of Propulsion Engineers, 15(4), 94-102(2011).
  11. Baker, W. E., "Explosions in Air," University of Texas Press, Austin (1973).
  12. Kingery, C. N. and Pannil, B. F., "Peak Overpressure vs Scaled Distance for TNT Surface Bursts," BRL, Memorandum Report No. 1518(1964).
  13. U.S. Department of Defense, "DoD Ammunition and Explosives Safety Standards," DoD 6055.9-STD, Washington, D.C(2004).
  14. Kinney, G. F. and Graham, K. J., "Explosive Shocks in Air," Springer-Verlag New York Inc, New York(1985).
  15. Clancey, V. J., "Diagnostic Features of Explosion Damage," 6th International Meeting on Forensic Sciences, Edinburgh, Scotland( 1972).
  16. Kim, S. H. and Han, Y. M., "A Case Study of the Allocation of the Propulsion Test Facilities Abroad in Consideration for Explosion Blast Overpressure," 2011 Fall Conference of The Korean Society For Aeronautical and Space Sciences, 11, 438-442(2011).
  17. U.S. Federal Aviation Administration, "Flight Safety Analysis Methodologies and Products for a Launch Vehicle Flown with a Flight Safety System," 14 CFR Parts 417, Appendix a to Part 417, Washington, D.C(2016).
  18. Sim, H. S., Choi, K. S., Ko, J. W. and Roh, W. R., Analysis on the Hazardous Radius for Blast Overpressure and Fireball from Launch Vehicle Explosion at Launch Pad," 2012 Spring Conference of The Korean Society of Aeronautics and Space Sciences, 274-279(2012).
  19. U.S. Federal Aviation Administration, "14 CFR Parts 401, 417 and 420 Licensing and Safety Requirements for Operation of a Launch Site; Rul," Part II Department of Transportation, Washington, D.C(2000).
  20. National Aeronautics and Space Administration, "Safety Standard for Explosive, Propellants, and Pyrotechnics," NASA-STD-8719.12, Washington, D.C(2011).
  21. Lyndon, B., Johnson Space Center, "JSC Safety and Health Handbook," JPG 1700.1, Houston(2002).

Cited by

  1. 발사체 고체추진제의 저장 및 시험 시 안전거리 산정에 관한 연구 vol.59, pp.2, 2016, https://doi.org/10.9713/kcer.2021.59.2.180