DOI QR코드

DOI QR Code

Revising Passive Satellite-based Soil Moisture Retrievals over East Asia Using SMOS (MIRAS) and GCOM-W1 (AMSR2) Satellite and GLDAS Dataset

자료동화 토양수분 데이터를 활용한 동아시아지역 수동형 위성 토양수분 데이터 보정: SMOS (MIRAS), GCOM-W1 (AMSR2) 위성 및 GLDAS 데이터 활용

  • Kim, Hyunglok (Department of Water Resources, Graduate School of Water Resources, Sungkyunkwan University) ;
  • Kim, Seongkyun (Department of Water Resources, Graduate School of Water Resources, Sungkyunkwan University) ;
  • Jeong, Jeahwan (Department of Water Resources, Graduate School of Water Resources, Sungkyunkwan University) ;
  • Shin, Incheol (National Meteorological Satellite Centre, Korea Meteorological Administration) ;
  • Shin, Jinho (National Meteorological Satellite Centre, Korea Meteorological Administration) ;
  • Choi, Minha (Department of Water Resources, Graduate School of Water Resources, Sungkyunkwan University)
  • 김형록 (성균관대학교 수자원학과) ;
  • 김성균 (성균관대학교 수자원학과) ;
  • 정재환 (성균관대학교 수자원학과) ;
  • 신인철 (기상청 국가기상위성센터) ;
  • 신진호 (기상청 국가기상위성센터) ;
  • 최민하 (성균관대학교 수자원학과)
  • Received : 2015.12.31
  • Accepted : 2016.04.12
  • Published : 2016.05.31

Abstract

In this study the Microwave Imaging Radiometer using Aperture Synthesis (MIRAS) sensor onboard the Soil Moisture Ocean Salinity (SMOS) and Advanced Microwave Scanning Radiometer 2 (AMSR2) sensor onboard the Global Change Observation Mission-Water (GCOM-W1) based soil moisture retrievals were revised to obtain better accuracy of soil moisture and higher data acquisition rate over East Asia. These satellite-based soil moisture products are revised against a reference land model data set, called Global Land Data Assimilation System (GLDAS), using Cumulative Distribution Function (CDF) matching and regression approach. Since MIRAS sensor is perturbed by radio frequency interferences (RFI), the worst part of soil moisture retrieval, East Asia, constantly have been undergoing loss of data acquisition rate. To overcome this limitation, the threshold of RFI, DQX, and composite days were suggested to increase data acquisition rate while maintaining appropriate data quality through comparison of land surface model data set. The revised MIRAS and AMSR2 products were compared with in-situ soil moisture and land model data set. The results showed that the revising process increased correlation coefficient values of SMOS and AMSR2 averagely 27% 11% and decreased the root mean square deviation (RMSD) decreased 61% and 57% as compared to in-situ data set. In addition, when the revised products' correlation coefficient values are calculated with model data set, about 80% and 90% of pixels' correlation coefficients of SMOS and AMSR2 increased and all pixels' RMSD decreased. Through our CDF-based revising processes, we propose the way of mutual supplementation of MIRAS and AMSR2 soil moisture retrievals.

동아시아 지역의 위성 토양수분 데이터 활용을 위해 Soil Moisture Ocean Salinity (SMOS) 위성에 탑재된 Microwave Imaging Radiometer using Aperture Synthesis (MIRAS) 센서와 Global Change Observation Mission-Water (GCOM-W1) 위성에 탑재된 Advanced Microwave Scanning Radiometer 2 (AMSR2) 센서 기반 토양수분 데이터를 자료동화 데이터인 Global Land Data Assimilation System (GLDAS)를 기준 값으로 Cumulative Distribution Function (CDF) 기법과 회귀식을 활용하여 보정하는 연구를 수행하였다. 동아시아 지역에서 발생하는 전파간섭의 영향을 고려하여 토양수분 산출에 적합하다고 판단되는 Radio Frequency Interference (RFI), Data Quality indeX (DQX) 한계값과, 합성일수를 제시하였다. 보완된 위성 토양수분 데이터를 지점 토양수분 데이터와 비교한 결과 상관계수가 평균 27%, 11% 증가하였고, Root Mean Square Deviation (RMSD, 평균제곱근 편차)는 평균 61%, 57% 감소하였다. 추가적으로, 보정된 위성데이터를 GLDAS 토양수분 데이터와 비교했을 때, 보정된 MIRAS 및 AMSR2 데이터는 한반도의 80% 및 90%의 지역에서 상관계수가 증가하였으며, 한반도 전역에서 RMSD가 감소하였다. 본 연구를 통해 향후 MIRAS 및 AMSR2 위성 데이터를 융합하여 각 위성의 토양수분 데이터를 보완 할 수 있는 가능성을 제시하였다.

Keywords

References

  1. Berthon, L, Mialon, A, Cabot, F, Al BA, Richaume, P, Kerr, Y and Jacquette, E (2012). CATDS Level 3 Data Product Description-Soil Moisture and Brightness Temperature Part. CESBIO, Toulouse, France.
  2. Cho, E, Moon, H and Choi, M (2015). First Assessment of the Advanced Microwave Scanning Radiometer 2 (AMSR2) Soil Moisture Contents in Northeast Asia, J. of the Meteorological Society of Japan, 93(1), pp. 117-129. https://doi.org/10.2151/jmsj.2015-008
  3. Choi, M and Jacobs, JM (2008). Temporal variability corrections for Advanced Microwave Scanning Radiometer E (AMSR-E) surface soil moisture: case study in Little River region, Georgia, US, Sensors, 8(4), pp. 2617-2627. https://doi.org/10.3390/s8042617
  4. Daganzo-Eusebio, E, Oliva, R, Kerr, YH, Nieto, S, Richaume, P and Mecklenburg, SM (2013). SMOS radiometer in the 1400-1427-MHz passive band: Impact of the RFI environment and approach to its mitigation and cancellation, Geoscience and Remote Sensing, IEEE Transactions on, 51(10), pp. 4999-5007. https://doi.org/10.1109/TGRS.2013.2259179
  5. de Jeu, R, Holmes, T, Dorigo, W, Wagner, W, Hahn, S and Parinussa, R (2012). Evaluation of SMOS soil moisture with other existing satellite products, IAHS-AISH publication, pp. 25-28.
  6. Dorigo, WA., Wagner, W, Hohensinn, R, Hahn, S, Paulik, C, Xaver, A, Drusch, M, Mecklenburg, S, van Oevelen, P, Robock, A and Jackson, T (2011). The International Soil Moisture Network: a data hosting facility for global in situ soil moisture measurements, Hydrology and Earth System Sciences, 15(5), pp. 1675-1698. https://doi.org/10.5194/hess-15-1675-2011
  7. Engman, ET and Chauhan, N (1995). Status of microwave soil moisture measurements with remote sensing, Remote Sensing of Environment, 51, pp. 189-198. https://doi.org/10.1016/0034-4257(94)00074-W
  8. Imaoka, K, Kachi, M, Kasahara, M, Ito, N, Nakagawa, K and Oki, T (2010). Instrument performance and calibration of AMSR-E and AMSR2, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 38(Part 8).
  9. Jackson, TJ (1993). Measuring surface soil moisture using passive microwave remote sensing, Hydrological Processes, 7, pp. 139-152. https://doi.org/10.1002/hyp.3360070205
  10. Jackson, TJ, LeVine, DM., Swift, CT, Schmugge, TJ and Schiebe, FR (1995). Large area mapping of soil moisture using the ESTAR passive microwave radiometer in Washita '92, Remote Sensing Reviews, 53, pp. 27-37.
  11. Jackson, TJ, O'Neill, PE and Swift, CT (1997). Passive microwave observation of diurnal surface soil moisture, IEEE Transactions on Geoscience and Remote Sensing, 35, pp. 1210-1222. https://doi.org/10.1109/36.628788
  12. Johnson, JT and Mustafa A (2011). Studies of radio frequency interference in SMOS observations, Geoscience and Remote Sensing Symposium (IGARSS), 2011 IEEE International.
  13. Kachi, M, Naoki, K, Hori, M and Imaoka, K (2013). AMSR2 validation results, In Geoscience and Remote Sensing Symposium (IGARSS), 2013 IEEE International, pp. 831-834.
  14. Kerr, YH, Waldteufel, P, Wigneron, JP, Martinuzzi, J, Font, J and Berger, M (2001). Soil moisture retrieval from space:The Soil Moisture and Ocean Salinity (SMOS) mission, Geoscience and Remote Sensing, IEEE Transactions on, 39(8), pp. 1729-1735. https://doi.org/10.1109/36.942551
  15. Kerr, YH., Waldteufel, P, Wigneron, JP, Delwart, S, Cabot, F, Boutin, J, Escorihuela, M, Font, J, Reul, N, Gruhier, C, Juglea, SE, Drinkwater, MR, Hahne, A, Martin-Neira, M and Mecklenburg, S. (2010). The SMOS mission: New tool for monitoring key elements of the global water cycle, Proceedings of the IEEE, 98(5), pp. 666-687. https://doi.org/10.1109/JPROC.2010.2043032
  16. Kim, H, and Choi, M (2015a). Impact of soil moisture on dust outbreaks in East Asia: Using satellite and assimilation data, Geophysical Research Letters, 42(8), pp. 2789-2796. https://doi.org/10.1002/2015GL063325
  17. Kim, H, and Choi, M (2015b). An Inter-comparison of Active and Passive satellite Soil Moisture Products in East Asia for Dust-Outbreak Prediction, J. of Korean Society of Hazard Mitigation, 15(4), pp. 53-58. [Korean Literature]
  18. Kim, H, Sunwoo, W, Kim, S, and Choi, M (2016). Construction and estimation of Soil Moisture site with FDR and COSMIC-ray (SM-FC) sensors for calibration/validation of satellite-based and COSMIC-ray soil moisture products in Sungkyunkwan university, South Korea, J. of Korea Water Resource Association, 49(2).[Korean Literature]
  19. Liu, YY, Parinussa, RM, Dorigo, WA, De Jeu, RAM., Wagner, W, Van Dijk, AIJM, McCabe, MF and Evans, JP (2011). Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals, Hydrology and Earth System Sciences, 15(2), pp. 425-436. https://doi.org/10.5194/hess-15-425-2011
  20. Liu, YY., Dorigo, WA, Parinussa, RM, de Jeu, RA, Wagner, W, McCabe, MF, Evanvs JP and Van Dijk, AIJM (2012). Trend-preserving blending of passive and active microwave soil moisture retrievals, Remote Sensing of Environment, 123, pp. 280-297. https://doi.org/10.1016/j.rse.2012.03.014
  21. Mustafa A and Johnson, JT (2013). A study of SMOS RFI over North America, Geoscience and Remote Sensing Letters, IEEE, 10(3), pp. 515-519. https://doi.org/10.1109/LGRS.2012.2211993
  22. Oliva, R, Daganzo, E, Kerr, YH, Mecklenburg, S, Nieto, S, Richaume, P, and Gruhier, C (2012). SMOS radio frequency interference scenario: Status and actions taken to improve the RFI environment in the 1400-1427-MHz passive band, Geoscience and Remote Sensing, IEEE Transactions on, 50(5), pp. 1427-1439. https://doi.org/10.1109/TGRS.2012.2182775
  23. Parinussa, RM, Holmes, TR, Wanders, N, Dorigo, WA, and de Jeu, RA (2015). A Preliminary Study toward Consistent Soil Moisture from AMSR2, J. of Hydrometeorology, 16(2), pp. 932-947. https://doi.org/10.1175/JHM-D-13-0200.1
  24. Reichle, RH and Koster, RD (2004). Bias reduction in short records of satellite soil moisture, Geophysical Research Letters, 31(19), pp. L19501. https://doi.org/10.1029/2004GL020938
  25. Rodell, M, Houser, PR, Jambor, UEA, Gottschalck, J, Mitchell, K, Meng, CJ, Rsenault, KA, Osgrove, BC, Adakovich, JR, Osilovich,MB, Ntin, JKE, Alker, JPW, Ohmann, DL, and Toll D (2004). The global land data assimilation system, Bulletin of the American Meteorological Society, 85(3), pp. 381-394. https://doi.org/10.1175/BAMS-85-3-381
  26. Rodell, M, Chen, J, Kato, H, Famiglietti, JS, Nigro, J and Wilson, CR (2007). Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE, Hydrogeology J., 15(1), pp. 159-166. https://doi.org/10.1007/s10040-006-0103-7
  27. Schmugge, T (1990). Measurements of surface soil moisture and temperature, In Remote Sensing of Biosphere Functioning (R. J. Hobbs and H. A. Mooney, Eds.), Springer-Verlag, New York, pp. 31-62.
  28. Schmugge, TJ, Kustas, WP, Ritchie, JC, Jackson, TJ, and Rango, A (2002). Remote sensing in hydrology, Advances in Water Resources, 25(8), pp. 1367-1385. https://doi.org/10.1016/S0309-1708(02)00065-9
  29. Wagner, W, Lemoine, G and Rott, H (1999). A method for estimating soil moisture from ERS scatterometer and soil data, Remote Sensing of Environment, 70(2), pp. 191-207. https://doi.org/10.1016/S0034-4257(99)00036-X
  30. Wagner, W, Hahn, S, Kidd, R, Melzer, T, Bartalis, Z, Hasenauer, S, Figa-Saldaña, J, de Rosnay, P, Jann, A, Schneider, S, Komma, J, Kubu, G, Brugger, K, Aubrecht, C, Zuger, J, Gangkofner, U, Kienberger, S, Brocca, L, Wang, Y, Bloschl, G, Eitzinger, J,Steinnocher, K, Zeil, P and Rubel, F (2013). The ASCAT soil moisture product: A review of its specifications, validation results, and emerging applications, Meteorologische Zeitschrift, 22(1), pp. 5-33. https://doi.org/10.1127/0941-2948/2013/0399